Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36557371

ABSTRACT

This paper describes the simulation by Solar Cell Capacitance Simulator-1D (SCAPS-1D) software of ZnO/CdS/SnS/NiO/Au solar cells, in which zinc oxide (ZnO) is used as transparent conductive oxide (TCO) and nickel oxide (NiO) is used as a hole transport layer (HTL). The effects of absorber layer (SnS) thickness, carrier concentration, SnS defect density, NiO HTL, ZnO TCO, electron affinity and work function on cell performance have been evaluated. The effect of interface defect density of SnS/CdS on the performance of the heterojunction solar cell is also analysed. As the results indicate, a maximum power conversion efficiency of 26.92% was obtained.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35745453

ABSTRACT

In this work, high-quality lithium-based, LiYF4=Yb3+,Er3+ upconversion (UC) thin film was electrodeposited on fluorene-doped tin oxide (FTO) glass for solar cell applications. A complete perovskite solar cell (PSC) was fabricated on top of the FTO glass coated with UC thin film and named (UC-PSC device). The fabricated UC-PSC device demonstrated a higher power conversion efficiency (PCE) of 19.1%, an additional photocurrent, and a better fill factor (FF) of 76% in comparison to the pristine PSC device (PCE = ~16.57%; FF = 71%). Furthermore, the photovoltaic performance of the UC-PSC device was then tested under concentrated sunlight with a power conversion efficiency (PCE) of 24% without cooling system complexity. The reported results open the door toward efficient PSCs for renewable and green energy applications.

3.
Nanomaterials (Basel) ; 11(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34835673

ABSTRACT

In this work, we report an easy, efficient method to synthesize high quality lithium-based upconversion nanoparticles (UCNPs) which combine two promising materials (UCNPs and lithium ions) known to enhance the photovoltaic performance of perovskite solar cells (PSCs). Incorporating the synthesized YLiF4:Yb,Er nanoparticles into the mesoporous layer of the PSCs cells, at a certain doping level, demonstrated a higher power conversion efficiency (PCE) of 19%, additional photocurrent, and a better fill factor (FF) of 82% in comparison to undoped PSCs (PCE = ~16.5%; FF = 71%). The reported results open a new avenue toward efficient PSCs for renewable energy applications.

4.
Nanomaterials (Basel) ; 11(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499075

ABSTRACT

The exceptional optical properties of lanthanide-doped upconversion nanoparticles (UCNPs) make them among the best fluorescent markers for many promising bioapplications. To fully utilize the unique advantages of the UCNPs for bioapplications, recent significant efforts have been put into improving the brightness of small UCNPs crystals by optimizing dopant concentrations and utilizing the addition of inert shells to avoid surface quenching effects. In this work, we engineered bright and small size upconversion nanoparticles in a core-shell-shell (CSS) structure. The emission of the synthesized CSS UCNPs is enhanced in the biological transparency window under biocompatible excitation wavelength by optimizing dopant ion concentrations. We also investigated the biosafety of the synthesized CSS UCNP particles in living cell models to ensure bright and non-toxic fluorescent probes for promising bioapplications.

5.
Nano Lett ; 19(10): 6765-6771, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31545901

ABSTRACT

Interfacial quantum states are drawing tremendous attention recently because of their importance in design of low-dimensional quantum heterostructures with desired charge, spin, or topological properties. Although most studies of the interfacial exchange interactions were mainly performed across the interface vertically, the lateral transport nowadays is still a major experimental method to probe these interactions indirectly. In this Letter, we fabricated a graphene and hydrogen passivated silicon interface to study the interfacial exchange processes. For the first time we found and confirmed a novel interfacial quantum state, which is specific to the 2D-3D interface. The vertically propagating electrons from silicon to graphene result in electron oscillation states at the 2D-3D interface. A harmonic oscillator model is used to explain this interfacial state. In addition, the interaction between this interfacial state (discrete energy spectrum) and the lateral band structure of graphene (continuous energy spectrum) results in Fano-Feshbach resonance. Our results show that the conventional description of the interfacial interaction in low-dimensional systems is valid only in considering the lateral band structure and its density-of-states and is incomplete for the ease of vertical transport. Our experimental observation and theoretical explanation provide more insightful understanding of various interfacial effects in low-dimensional materials, such as proximity effect, quantum tunneling, etc. More important, the Fano-Feshbach resonance may be used to realize all solid-state and scalable quantum interferometers.

6.
Sci Rep ; 8(1): 10259, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29980765

ABSTRACT

A traditional transparent conducting film (TCF) such as indium tin oxide (ITO) exhibits poor mechanical flexibility and inconsistent transmittance throughout the UV-VIS-NIR spectrum. Recent TCFs like graphene films exhibit high sheet resistance (Rs) due to defect induced carrier scattering. Here we show a unique hybrid chemical doping method that results in high transmittance uniformity in a layered graphene-polymer nanocomposite with suppressed defect-induced carrier scattering. This layer-by-layer hybrid chemical doping results in low Rs (15 Ω/sq at >90% transmittance) and 3.6% transmittance uniformity (300-1000 nm) compared with graphene (17%), polymer (8%) and ITO (46%) films. The weak localization effect in our nanocomposite was reduced to 0.5%, compared with pristine (4.25%) and doped graphene films (1.2%). Furthermore, negligible Rs change (1.2 times compared to 12.6 × 103 times in ITO) and nearly unaltered transmittance spectra were observed up to 24 GPa of applied stress highlighting mechanical flexibility of the nanocomposite film.

7.
Nano Lett ; 18(2): 682-688, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29300487

ABSTRACT

Vertical integration of van der Waals (vdW) materials with atomic precision is an intriguing possibility brought forward by these two-dimensional (2D) materials. Essential to the design and analysis of these structures is a fundamental understanding of the vertical transport of charge carriers into and across vdW materials, yet little has been done in this area. In this report, we explore the important roles of single layer graphene in the vertical tunneling process as a tunneling barrier. Although a semimetal in the lateral lattice plane, graphene together with the vdW gap act as a tunneling barrier that is nearly transparent to the vertically tunneling electrons due to its atomic thickness and the transverse momenta mismatch between the injected electrons and the graphene band structure. This is accentuated using electron tunneling spectroscopy (ETS) showing a lack of features corresponding to the Dirac cone band structure. Meanwhile, the graphene acts as a lateral conductor through which the potential and charge distribution across the tunneling barrier can be tuned. These unique properties make graphene an excellent 2D atomic grid, transparent to charge carriers, and yet can control the carrier flux via the electrical potential. A new model on the quantum capacitance's effect on vertical tunneling is developed to further elucidate the role of graphene in modulating the tunneling process. This work may serve as a general guideline for the design and analysis of vdW vertical tunneling devices and heterostructures, as well as the study of electron/spin injection through and into vdW materials.

8.
Sci Rep ; 6: 32503, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27581550

ABSTRACT

Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...