Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Alloys Compd ; 849: 156702, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-32834521

ABSTRACT

In this research, due to the present pandemic of COVID-19, we are proposing a stable and fixed semitransparent photo-thermoelectric cell (PTEC) module for green energy harvesting. This module is based on the alloy of Bismuth Telluride Selenide (Bi2Te3Se), designed in a press tablet form and characterized under solar energy. Here, both aspects of solar energy i.e., light and heat are utilized for both energy production and water heating. The semitransparent PTEC converts heat energy directly to electrical energy due to the gradient of temperature between two electrodes (top and bottom) of thermoelectric cells. The PTEC is 25% transparent, which can be varied according to the necessity of the utilizer. The X-ray diffraction of material and electric characterization of module i.e., open-circuited voltage (VOC) and Seebeck coefficient were performed. The experimental observations disclose that in the proposed PTEC module with an increment in the average temperature (TAvg) from 34 to 60 °C, results in the rise of VOC âˆ¼ 2.4 times. However, by modifying the size of heat-absorbing top electrode and by increasing the temperature gradient through the addition of water coolant under the bottom electrode, an uplift in the champion device results in as increment of VOC ∼5.5 times and Seebeck coefficient obtained was -250 µV/0C, respectively. Results show that not only the selection of material but also the external modifications in the device highly effective the power efficiency of the devices. The proposed modules can generate electric power from light and utilize the penetrating sunlight inside the room and for the heating of the water which also acts as a coolant. These semitransparent thermoelectric cells can be built-in within windows and roofs of buildings and can potentially contribute to green energy harvesting, in situations where movement is restricted locally or globally.

2.
J Mater Res Technol ; 9(6): 12795-12803, 2020.
Article in English | MEDLINE | ID: mdl-38620721

ABSTRACT

The present situation of COVID-19 diverted our focus towards utilizing the degraded solar cells for sensor application, this will help in global energy harvesting. So, here is our successful effort to reuse already degraded solar cells as ultraviolet (UV) and infrared (IR) sensor. The spin-coated perovskite (CH3NH3PbI3-XClX) has been already tested for visible light spectrum, as an extension to that now it is utilized as UV and IR intensity sensors to cover the whole spectrum. The employed CH3NH3PbI3-XClX material was used after its efficiency loss has been reached to a saturation point in photovoltaic devices. Each deposited layer was investigated from UV to the IR absorption spectrum for deepening study through UV-vis spectroscopy. In the sandwiched architecture possessing FTO/PEDOT: PSS/Perovskite/PC61BM/CdS/Au symmetry, the perovskite film has been employed as an absorbent layer, however, other layers participation also plays a key role. The resultant device yielded very good sensing performance because of the enhanced excitons generation which is attributed to the precise selection of the interfacial materials, e.g. CdS and PC61BM as an ETM and PEDOT: PSS as HTM. The impedance and capacitance of the devices within 0.01-200 kHz under varied UV and IR illumination intensities were investigated. Measurements showed that as the intensity of the light increased i.e., UV (0-200 W/m2) and IR (0-5800 W/m2), impedance decreased while capacitance increased. The current results are attributed to the increase in the concentration of charges i.e., electron-hole pairs generation depending on the built-in capacitance and frequency of the charges.

SELECTION OF CITATIONS
SEARCH DETAIL
...