Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Folia Neuropathol ; 59(2): 143-151, 2021.
Article in English | MEDLINE | ID: mdl-34284542

ABSTRACT

Neurogenesis occurs during the embryological development of the brain. However, it is universally accepted that in all adult mammalian brains, there are two sites of high-density cell division: the subventricular zone of the lateral ventricles (SVZ) and the subgranular zone (SGZ) of the dentate gyrus of the hippocampal formation. Doxorubicin (DOX) is an anthracycline agent which results in cognitive deterioration and memory impairment, whereas memantine (MEM) is an NMDA receptor antagonist which is approved for the treatment of Alzheimer's dementia. Many studies have revealed MEM's positive impact on memory and demonstrated that it stimulates neuronal division in the hippocampus. This study aimed to assess the effect of MEM on spatial memory and neural proliferation in the hippocampus in adult male rats treated with DOX. For this purpose, forty male Sprague-Dawley rats were divided into four groups of ten rats each according to the agent: control, MEM (2.5 mg/kg), DOX (2 mg/kg), and DOX with MEM. The rats were given seven intraperitoneal injections every other day. We tracked the rat's weights to assess the weight-reducing effects of the drugs. In order to test spatial memory, the rats were subjected to the novel location recognition (NLR) task 30 minutes after the last injection. Additionally, Ki67 immunohistochemistry was performed to examine hippocampal proliferation. The results showed a significant reduction in discrimination index (DI) in the DOX-treated group compared to MEM- (p < 0.001) and MEM with DOX-treated groups (p < 0.001). There was a significant increase in Ki67-positive cells in the MEM-treated group compared to the saline-treated group. Treatment with DOX impaired hippocampal proliferation compared to treatment with MEM or saline. The co-administration of MEM with DOX ameliorated the decline in hippocampal proliferation compared to treatment with DOX alone. There was a significant weight reduction in the DOX group in comparison to the control group, but MEM attenuated DOX-induced weight loss. Rats treated with DOX displayed a drop in memory, hippocampal proliferation, and weight compared to the MEM-treated group, whereas the co-administration of MEM with DOX protected memory, hippocampal proliferation, and doxorubicin-induced weight loss.


Subject(s)
Hippocampus , Memantine , Animals , Cell Proliferation , Male , Memantine/pharmacology , Neurogenesis , Rats , Rats, Sprague-Dawley
2.
Eur. j. anat ; 23(4): 243-251, jul. 2019. ilus, graf
Article in English | IBECS | ID: ibc-182997

ABSTRACT

Atomoxetine (ATX) is a noradrenaline reuptake inhibitor used to treat Attention deficit hyperactive syndrome (ADHD), or improve cognition in normal subjects. The cognitive effects of ATX require inputs from the hippocampus. Moreover, proliferation is said to be located in the dentate gyrus (DG) of the hippocampus.In the present study, we hypothesised that ATX improves memory and proliferation of the adult rat hippocampus. To test this hypothesis, 5 intraperitoneal injections of ATX (30 mg/kg/day) over 5 consecutive days were delivered to rats. 30 minutes after the last injection, spatial memory was tested using the Novel location recognition (NLR) test. Proliferation of hippocampal cells was quantified using immunohistochemistry for the proliferative marker Ki67. ATX-treated rats showed cognitive enhancement in the NLR task and increase in cell proliferation in the Subgranular zone (SGZ) of the DG, compared to saline-treated controls. The results demonstrate that ATX is able to enhance cognition through increasing the levels of proliferation in the adult rat brains


No disponible


Subject(s)
Animals , Adult , Rats , Atomoxetine Hydrochloride/pharmacology , Cerebrum/drug effects , Attention Deficit Disorder with Hyperactivity/drug therapy , Central Nervous System Stimulants/pharmacology , Hippocampus/anatomy & histology , Attention Deficit Disorder with Hyperactivity/metabolism , Immunohistochemistry , Habituation, Psychophysiologic/drug effects , Disease Models, Animal , Neurogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...