Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Methods ; 20(1): 96, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902736

ABSTRACT

BACKGROUND: Pesticide efficacy directly affects crop yield and quality, making targeted spraying a more environmentally friendly and effective method of pesticide application. Common targeted cabbage spraying methods often involve object detection networks. However, complex natural and lighting conditions pose challenges in the accurate detection and positioning of cabbage. RESULTS: In this study, a cabbage detection algorithm based on the YOLOv8n neural network (YOLOv8-cabbage) combined with a positioning system constructed using a Realsense depth camera is proposed. Initially, four of the currently available high-performance object detection models were compared, and YOLOv8n was selected as the transfer learning model for field cabbage detection. Data augmentation and expansion methods were applied to extensively train the model, a large kernel convolution method was proposed to improve the bottleneck section, the Swin transformer module was combined with the convolutional neural network (CNN) to expand the perceptual field of feature extraction and improve edge detection effectiveness, and a nonlocal attention mechanism was added to enhance feature extraction. Ablation experiments were conducted on the same dataset under the same experimental conditions, and the improved model increased the mean average precision (mAP) from 88.8% to 93.9%. Subsequently, depth maps and colour maps were aligned pixelwise to obtain the three-dimensional coordinates of the cabbages via coordinate system conversion. The positioning error of the three-dimensional coordinate cabbage identification and positioning system was (11.2 mm, 10.225 mm, 25.3 mm), which meets the usage requirements. CONCLUSIONS: We have achieved accurate cabbage positioning. The object detection system proposed here can detect cabbage in real time in complex field environments, providing technical support for targeted spraying applications and positioning.

2.
Animals (Basel) ; 13(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37835740

ABSTRACT

A forest wildlife detection algorithm based on an improved YOLOv5s network model is proposed to advance forest wildlife monitoring and improve detection accuracy in complex forest environments. This research utilizes a data set from the Hunan Hupingshan National Nature Reserve in China, to which data augmentation and expansion methods are applied to extensively train the proposed model. To enhance the feature extraction ability of the proposed model, a weighted channel stitching method based on channel attention is introduced. The Swin Transformer module is combined with a CNN network to add a Self-Attention mechanism, thus improving the perceptual field for feature extraction. Furthermore, a new loss function (DIOU_Loss) and an adaptive class suppression loss (L_BCE) are adopted to accelerate the model's convergence speed, reduce false detections in confusing categories, and increase its accuracy. When comparing our improved algorithm with the original YOLOv5s network model under the same experimental conditions and data set, significant improvements are observed, in particular, the mean average precision (mAP) is increased from 72.6% to 89.4%, comprising an accuracy improvement of 16.8%. Our improved algorithm also outperforms popular target detection algorithms, including YOLOv5s, YOLOv3, RetinaNet, and Faster-RCNN. Our proposed improvement measures can well address the challenges posed by the low contrast between background and targets, as well as occlusion and overlap, in forest wildlife images captured by trap cameras. These measures provide practical solutions for enhanced forest wildlife protection and facilitate efficient data acquisition.

SELECTION OF CITATIONS
SEARCH DETAIL
...