Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 237(1): 1057-1069, 2022 01.
Article in English | MEDLINE | ID: mdl-34750830

ABSTRACT

Atherosclerosis (AS) is a common disease that seriously threatens human health. So far, the pathogenesis of AS has not been fully understood. This project investigates the effects of circARHGAP12 on AS and its regulatory mechanism. ApoE-/- knockout mice (ApoE) were adopted and reared with a high-fat diet to construct an AS model. Lentivirus was established to knock down the expression of circARHGAP12 in mice. After 12 weeks, the aorta was removed and the expression of circARHGAP12 was detected. Vascular oil red O staining was used to detect the degree of AS. The expression of inflammatory factors was detected by ELISA. Aortic smooth muscle cells (MASMCs) were cultured to evaluate the effects of circARHGAP12 on the phenotype of MASMCs. RNA pull-down and luciferase assay were used to verify the downstream target genes of circARHGAP12. In addition, the effects of circARHGAP12 on MASMCs proliferation and migration were detected by MTT and transwell assay. Compared with the normal group, the expression of circARHGAP12 in the MASMCs under ox-LDL treatment was elevated, and circARHGAP12 silencing could inhibit AS in vitro and in vivo. The results of the mechanism study showed that circARHGAP12 can directly bind with miR-630. In addition, miR-630 can also target EZH2 to modulate the transcription of TIMP2 and to influence the migration of MASMCs. circARHGAP12 is upregulated in AS. CircARHGAP12 knockdown can inhibit the progression of AS. This study expands on the role of circRNA in AS and provides potential targets for the treatment of AS.


Subject(s)
Atherosclerosis , MicroRNAs , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/pathology , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , Lipoproteins, LDL/metabolism , Mice , Mice, Knockout, ApoE , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism
2.
Org Lett ; 24(2): 472-477, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34797076

ABSTRACT

Divergent synthesis of four contorted aromatics containing pentagons, a heptagon, and/or an azulene from the same difluorenyl pentacenediene precursor were realized in one step. The subtle differences in molecular structure were confirmed by X-ray crystallography. The mechanisms for the control of different products, which involve a ring-expansion rearrangement, Scholl reactions, and/or Mallory cyclization were proposed on the basis of control experiments and DFT calculations. Such development adds good structure versatility and materials accessibility to the study of contorted aromatics.

3.
Life Sci ; 257: 117919, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32585247

ABSTRACT

AIM: This study is undertaken to investigate the role and molecular mechanisms of miR-18a-5p in regulating pulmonary arterial hypertension (PAH) pathogenesis. METHODS: Gene expression and protein levels were determined by qRT-PCR and western blot, respectively; Cell counting kti-8 and Transwell migration assays were used to determine the biological functions of miR-18a-5p in pulmonary arterial smooth muscle cells (PASMCs); bioinformatics analysis, luciferase reporter assays were used to elucidate the mechanisms of miR-18a-5p. RESULTS: MiR-18a-5p was up-regulated in the clinical samples from PAH patients. PASMCs treated with hypoxia exhibited enhanced proliferative ability and upregulated miR-18a-5p expression. Knockdown of miR-18a-5p attenuated hypoxia-induced hyper-proliferation and enhanced migratory potential of PASMCs; while miR-18a-5p overexpression promoted PASMC proliferation and migration. Further mechanistic studies showed that Notch2 was a direct target of miR-18a-5p and was repressed by miR-18a-5p overexpression. The rescue studies indicated that Notch2 overexpression counteracted the enhanced proliferation and migration induced by miR-18a-5p mimics in PASMCs. Similarly, Notch2 overexpression also block the effects caused by hypoxia in PASMCs. Moreover, Notch2 expression was down-regulated in the PAH patients and was negatively correlated with miR-18a-5p expression. In vivo animal studies further revealed the up-regulation of miR-18a-5p and the down-regulation of Notch2 in the PAH rats. CONCLUSIONS: Collectively, this study identified the up-regulated miR-18a-5p in the PAH patients; our data suggest that miR-18a-5p contributes to the enhanced proliferation and migration of PASMCs via repressing Notch2 expression.


Subject(s)
MicroRNAs/genetics , Pulmonary Arterial Hypertension/genetics , Receptor, Notch2/metabolism , Animals , Apoptosis/physiology , Cell Hypoxia/physiology , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , China , Familial Primary Pulmonary Hypertension/pathology , Female , Humans , Hypertension, Pulmonary/metabolism , Hypoxia/physiopathology , Male , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats , Receptor, Notch2/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...