Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731839

ABSTRACT

CLEC4G, a glycan-binding receptor, has previously been demonstrated to inhibit Aß generation, yet its brain localization and functions in Alzheimer's disease (AD) are not clear. We explored the localization, function, and regulatory network of CLEC4G via experiments and analysis of RNA-seq databases. CLEC4G transcripts and proteins were identified in brain tissues, with the highest expression observed in neurons. Notably, AD was associated with reduced levels of CLEC4G transcripts. Bioinformatic analyses revealed interactions between CLEC4G and relevant genes such as BACE1, NPC1, PILRA, TYROBP, MGAT1, and MGAT3, all displaying a negative correlation trend. We further identified the upstream transcriptional regulators NR2F6 and XRCC4 for CLEC4G and confirmed a decrease in CLEC4G expression in APP/PS1 transgenic mice. This study highlights the role of CLEC4G in protecting against AD progression and the significance of CLEC4G for AD research and management.


Subject(s)
Alzheimer Disease , Lectins, C-Type , Mice, Transgenic , Neurons , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Neurons/metabolism , Mice , Humans , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Brain/metabolism , Brain/pathology , Gene Expression Regulation , Disease Models, Animal
2.
Mol Plant Pathol ; 25(3): e13440, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38460111

ABSTRACT

Given the detrimental effects of excessive reactive oxygen species (ROS) accumulation in plant cells, various antioxidant mechanisms have evolved to maintain cellular redox homeostasis, encompassing both enzymatic components (e.g., catalase, superoxide dismutase) and non-enzymatic ones. Despite extensive research on the role of antioxidant systems in plant physiology and responses to abiotic stresses, the potential exploitation of antioxidant enzymes by plant viruses to facilitate viral infection remains insufficiently addressed. Herein, we demonstrate that maize catalases (ZmCATs) exhibited up-regulated enzymatic activities upon sugarcane mosaic virus (SCMV) infection. ZmCATs played crucial roles in SCMV multiplication and infection by catalysing the decomposition of excess cellular H2 O2 and promoting the accumulation of viral replication-related cylindrical inclusion (CI) protein through interaction. Peroxisome-localized ZmCATs were found to be distributed around SCMV replication vesicles in Nicotiana benthamiana leaves. Additionally, the helper component-protease (HC-Pro) of SCMV interacted with ZmCATs and enhanced catalase activities to promote viral accumulation. This study unveils a significant involvement of maize catalases in modulating SCMV multiplication and infection through interaction with two viral factors, thereby enhancing our understanding regarding viral strategies for manipulating host antioxidant mechanisms towards robust viral accumulation.


Subject(s)
Potyvirus , Zea mays , Catalase , Antioxidants , Potyvirus/physiology , Virus Replication , Plant Diseases
3.
Nat Neurosci ; 27(3): 449-461, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177340

ABSTRACT

Microglia are resident immune cells of the central nervous system and play key roles in brain homeostasis. During anesthesia, microglia increase their dynamic process surveillance and interact more closely with neurons. However, the functional significance of microglial process dynamics and neuronal interaction under anesthesia is largely unknown. Using in vivo two-photon imaging in mice, we show that microglia enhance neuronal activity after the cessation of isoflurane anesthesia. Hyperactive neuron somata are contacted directly by microglial processes, which specifically colocalize with GABAergic boutons. Electron-microscopy-based synaptic reconstruction after two-photon imaging reveals that, during anesthesia, microglial processes enter into the synaptic cleft to shield GABAergic inputs. Microglial ablation or loss of microglial ß2-adrenergic receptors prevents post-anesthesia neuronal hyperactivity. Our study demonstrates a previously unappreciated function of microglial process dynamics, which enable microglia to transiently boost post-anesthesia neuronal activity by physically shielding inhibitory inputs.


Subject(s)
Anesthesia , Microglia , Mice , Animals , Microglia/physiology , Brain/physiology , Synapses/physiology , Neurons/physiology
4.
Stem Cell Rev Rep ; 20(2): 524-537, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38112926

ABSTRACT

Mesenchymal stem cells (MSCs) are adult stem cells that can be obtained, enriched and proliferated in vitro. They owned enormous potential in fields like regenerative medicine, tissue engineering and immunomodulation. However, though isolated from the same origin, MSCs are still essentially heterogeneous cell populations with different phenotypes and functions. This heterogeneity of MSCs significantly affects their therapeutic efficacy and brings obstacles to scientific research. Thus, reliable sorting technology which can isolate or purify MSC subpopulations with various potential and differentiation pathways is urgently needed. This review summarized principles, application status and clinical implications for these sorting methods, aiming at improving the understanding of MSC heterogeneity as well as providing fresh perspectives for subsequent clinical applications.


Subject(s)
Adult Stem Cells , Mesenchymal Stem Cells , Regenerative Medicine , Tissue Engineering , Cell Differentiation
6.
Neuro Oncol ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37941134

ABSTRACT

BACKGROUND: Myeloid cells comprise up to 50% of the total tumor mass in glioblastoma (GBM) and have been implicated in promoting tumor progression and immunosuppression. Modulating the response of myeloid cells to the tumor has emerged as a promising new approach for cancer treatment. In this regard, we focus on the Triggering Receptor Expressed on Myeloid cells 2 (TREM2), which has recently emerged as a novel immune modulator in peripheral tumors. METHODS: We studied the TREM2 expression profile in various patient tumor samples and conducted single-cell transcriptomic analysis in both glioblastoma patients and the GL261 mouse glioma model. We utilized multiple mouse glioma models and employed state-of-the-art techniques such as in vivo two-photon imaging, spectrum flow cytometry, and in vitro co-culture assays to study TREM2 function in myeloid cell-mediated phagocytosis of tumor cells, antigen presentation, and response of CD4+ T cells within the tumor hemispheres. RESULTS: Our research revealed significantly elevated levels of TREM2 expression in brain tumors compared to other types of tumors in patients. TREM2 was predominantly localized in tumor-associated myeloid cells and was highly expressed in nearly all microglia, as well as various subtypes of macrophages. Surprisingly, in pre-clinical glioma models, TREM2 deficiency did not confer a beneficial effect; instead, it accelerated glioma progression. Through detailed investigations, we determined that TREM2 deficiency impaired the ability of tumor-myeloid cells to phagocytose tumor cells and led to reduced expression of MHCII. This deficiency further significantly decreased the presence of CD4+ T cells within the tumor hemispheres. CONCLUSIONS: Our study unveiled a previously unrecognized protective role of tumor-myeloid TREM2. Specifically, we found TREM2 enhance the phagocytosis of tumor cells and promote an immune response by facilitating MHCII-associated CD4+ T cell responses against gliomas.

7.
Nat Immunol ; 24(11): 1854-1866, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857825

ABSTRACT

Microglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4. Expression of apoE3 in microglia/CAMs improves cognitive function, increases microglia surrounding amyloid plaque and reduces amyloid pathology and associated toxicity, whereas apoE4 expression either compromises or has no effects on these outcomes by impairing lipid metabolism. Single-cell transcriptomic profiling reveals increased antigen presentation and interferon pathways upon apoE3 expression. In contrast, apoE4 expression downregulates complement and lysosomal pathways, and promotes stress-related responses. Moreover, in the presence of mouse endogenous apoE, microglial apoE4 exacerbates amyloid pathology. Finally, we observed a reduction in Lgals3-positive responsive microglia surrounding amyloid plaque and an increased accumulation of lipid droplets in APOE4 human brains and induced pluripotent stem cell-derived microglia. Our findings establish critical isoform-dependent effects of microglia/CAM-expressed apoE in brain function and the development of amyloid pathology, providing new insight into how apoE4 vastly increases AD risk.


Subject(s)
Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Microglia/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Brain , Homeostasis , Mice, Transgenic
8.
J Colloid Interface Sci ; 650(Pt A): 784-797, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37441971

ABSTRACT

ZnIn2S4/ZnO heterostructures have been achieved by a simple in-situ growth solvothermal method. Under full spectrum irradiation, the optimal photocatalyst 2ZnIn2S4/ZnO exhibits H2 evolution rate of 13,638 (water/ethanol = 1:1) and 3036 (water) µmol·g-1h-1, which is respectively 4 and 5 times higher than that of pure ZnIn2S4. In situ illumination X-ray photoelectron spectroscopy (ISI-XPS) analysis and density functional theory (DFT) calculations show that the electrons of ZnIn2S4 are removed to ZnO through hybridization and form an internal electric field between ZnIn2S4 and ZnO. The optical properties of the catalyst and the effect of internal electric field (IEF) can increase photo-generated electrons (e-)-holes (h+) transport rate and enhance light collection, resulting in profitable photocatalytic properties. The photoelectrochemical and EPR results show that a stepped (S-scheme) heterojunction is formed in the ZnIn2S4/ZnO redox center, which greatly promotes separation of e--h+ pairs and efficient H2 evolution. This research offers an effective method for constructing an efficient S-Scheme photocatalytic system for H2 evolution.

9.
Mol Psychiatry ; 28(10): 4374-4389, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37280283

ABSTRACT

Activation of innate immunity in the brain is a prominent feature of Alzheimer's disease (AD). The present study investigated the regulation of innate immunity by wild-type serum injection in a transgenic AD mouse model. We found that treatment with wild-type mouse serum significantly reduced the number of neutrophils and microglial reactivity in the brains of APP/PS1 mice. Mimicking this effect, neutrophil depletion via Ly6G neutralizing antibodies resulted in improvements in AD brain functions. Serum proteomic analysis identified vascular endothelial growth factor-A (VEGF-A) and chemokine (C-X-C motif) ligand 1 (CXCL1) as factors enriched in serum samples, which are crucial for neutrophil migration and chemotaxis, leukocyte migration, and cell chemotaxis. Exogenous VEGF-A reversed amyloid ß (Aß)-induced decreases in cyclin-dependent kinase 5 (Cdk5) and increases in CXCL1 in vitro and blocked neutrophil infiltration into the AD brain. Endothelial Cdk5 overexpression conferred an inhibitory effect on CXCL1 and neutrophil infiltration, thereby restoring memory abilities in APP/PS1 mice. Our findings uncover a previously unknown link between blood-derived VEGF signaling and neutrophil infiltration and support targeting endothelial Cdk5 signaling as a potential therapeutic strategy for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Mice, Transgenic , Vascular Endothelial Growth Factor A , Neutrophil Infiltration , Proteomics , Alzheimer Disease/therapy , Memory Disorders , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Presenilin-1/genetics
10.
Phys Chem Chem Phys ; 25(16): 11484-11492, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37039011

ABSTRACT

Developing novel lead-free perovskite materials with suitable bandgaps and superior thermal stability is crucial to boost their applications in next-generation photovoltaic technologies. High throughput screening combined with the first principles method can accurately and effectively screen out promising perovskites. Herein, we select two lead-free all-inorganic halide double perovskite materials Cs2KMI6 (M = Ga, In) from 1026 compounds with the criteria including appropriate structure factors, positive decomposition energies, and suitable direct bandgaps. We investigated the thermal and mechanical stability, geometric and electronic structures, photoelectric properties, and defect formation energies for both perovskites Cs2KMI6 (M = Ga, In). They can exhibit excellent structural formability and stability through the analysis of structure factors, elastic constants, and stable chemical potential regions. In addition, we investigate the defect effects of Cs2KMI6 (M = Ga, In) on the photovoltaic performance by evaluating the defect formation energies and transition energy levels. Based on the HSE06 functional, we calculated the energy band structures of these two compounds and demonstrate the direct bandgaps of 1.69 eV (HSE06) and 2.16 eV (HSE06) for Cs2KGaI6 and Cs2KInI6, respectively. Moreover, we predicted excellent spectroscopic limited maximum efficiencies (SLMEs) of these two perovskites with high light absorption coefficients (around 105 cm-1), for instance, the SLME of Cs2KGaI6 can reach as high as 28.39%.

11.
Adv Mater ; 35(9): e2205603, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36562082

ABSTRACT

Tin-based perovskite solar cells (TPSCs) are attracting intense research interest due to their excellent optoelectric properties and eco-friendly features. To further improve the device performance, developing new fullerene derivatives as electron transporter layers (ETLs) is highly demanded. Four well-defined regioisomers (trans-2, trans-3, trans-4, and e) of diethylmalonate-C60 bisadduct (DCBA) are isolated and well characterized. The well-defined molecular structure enables us to investigate the real structure-dependent effects on photovoltaic performance. It is found that the chemical structures of the regioisomers not only affect their energy levels, but also lead to significant differences in their molecular packings and interfacial contacts. As a result, the devices with trans-2, trans-3, trans-4, and e as ETLs yield efficiencies of 11.69%, 14.58%, 12.59%, and 10.55%, respectively, which are higher than that of the as-prepared DCBA-based (10.28%) device. Notably, the trans-3-based device also demonstrates a certified efficiency of 14.30%, representing one of the best-performing TPSCs.

12.
Phys Chem Chem Phys ; 24(44): 26948-26961, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36345810

ABSTRACT

The certified power conversion efficiency of perovskite solar cells is gradually approaching that of crystalline silicon solar cells. Accordingly, considering the advantages of improved thermal stability and environmental friendliness of lead-free all-inorganic halide double perovskites (LFAIHDPs), they have attracted considerable attention in optoelectronic applications. Herein, we review the recent progress on LFAIHDPs via heterovalent substitution of the lead element, including their geometrical and electronic structures, synthetic processes, and applications in optoelectronic devices. Many experimental and theoretical efforts have been devoted to investigating the thermal stability, defects, and optoelectronic properties of lead-free all-inorganic halide double perovskite materials, which have been presented. Lastly, we discuss the application of machine learning strategies to predict novel perovskite structures with excellent thermal stability and optoelectronic performance.

13.
Front Microbiol ; 13: 968036, 2022.
Article in English | MEDLINE | ID: mdl-36071962

ABSTRACT

To combat the continued pandemic of COVID-19, multiplex serological assays have been developed to comprehensively monitor the humoral immune response and help to design new vaccination protocols to different SARS-CoV-2 variants. However, multiplex beads and stably transfected cell lines require stringent production and storage conditions, and assays based on flow cytometry is time-consuming and its application is therefore restricted. Here, we describe a phage display system to distinguish the differences of immune response to antigenic domains of multiple SARS-CoV-2 variants simultaneously. Compared with linear peptides, the recombinant antigens displayed on the phage surface have shown some function that requires the correct folding to form a stable structure, and the binding efficiency between the recombinant phage and existing antibodies is reduced by mutations on antigens known to be important for antigen-antibody interaction. By using Phage display mediated immuno-multiplex quantitative PCR (Pi-mqPCR), the binding efficiency between the antibody and antigens of different SARS-CoV-2 variants can be measured in one amplification reaction. Overall, these data show that this assay is a valuable tool to evaluate the humoral response to the same antigen of different SARS-CoV-2 variants or antigens of different pathogens. Combined with high-throughput DNA sequencing technology, this phage display system can be further applied in monitoring humoral immune response in a large population before and after vaccination.

15.
Phys Chem Chem Phys ; 23(45): 25789-25796, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34766607

ABSTRACT

Organic molecules with thermally activated delayed fluorescence (TADF) and aggregation induced emission (AIE) properties have attracted increasing research interest due to their great potential applications in organic light emitting diodes (OLEDs), especially for those with multicolor mechanochromic luminescence (MCL) features. Theoretical research on the luminescence characteristics of organic TADF emitters based on the aggregation states is highly desired to quantify the relationship between the TADF properties and aggregation states. In this work, we study the 4,4'-(6-(9,9-dimethylacridine-10(9H)-yl)quinoline-2,3-dibenzonitrile (DMAC-CNQ) emitter with TADF and AIE properties, and calculate the photophysical properties in gas, solid and amorphous states by using the quantum mechanics and molecular mechanics (QM/MM) method. Our simulations demonstrate that the aggregation states enhance obviously the reverse intersystem crossing rates and transition dipole moments of the DMAC-CNQ emitter, and suppress the non-radiative rates from the lowest excited singlet state (S1) to ground state (S0). Specifically, the molecular stacking of DMAC-CNQ in solid phases can mainly restrict the geometric torsion of the DMAC moiety for decreasing non-radiative decay rates, and the torsion of the CNQ moiety for increasing the reverse intersystem crossing rates. As a result, the calculated fluorescence efficiencies of the DMAC-CNQ emitter in the crystal and amorphous states are 67% and 26% respectively, and in good agreement with the experimental results.

16.
Neurosurg Focus ; 51(2): E17, 2021 08.
Article in English | MEDLINE | ID: mdl-34333480

ABSTRACT

OBJECTIVE: Today, minimally invasive procedures have become mainstream surgical procedures. Percutaneous endoscopic transforaminal discectomy for lumbar disc herniation (LDH) requires profound knowledge of the laparoscopic lumbar anatomy. Immersive virtual reality (VR) provides three-dimensional patient-specific models to help in the process of preclinical surgical preparation. In this study, the authors investigated the efficacy of VR application in LDH for training orthopedic residents and postgraduates. METHODS: VR images of the lumbar anatomy were created with immersive VR and mAnatomy software. The study was conducted among 60 residents and postgraduates. A questionnaire was developed to assess the effect of and satisfaction with this VR-based basic and clinical fused curriculum. The teaching effect was also evaluated through a postlecture test, and the results of the prelecture surgical examination were taken as baselines. RESULTS: All participants in the VR group agreed that VR-based education is practical, attractive, and easy to operate, compared to traditional teaching, and promotes better understanding of the anatomical structures involved in LDH. Learners in the VR group achieved higher scores on an anatomical and clinical fusion test than learners in the traditional group (84.67 ± 14.56 vs 76.00 ± 16.10, p < 0.05). CONCLUSIONS: An immersive VR-based basic and clinical fused curriculum can increase residents' and postgraduates' interest and support them in mastering the structural changes and complicated symptoms of LDH. However, a simplified operational process and more realistic haptics of the VR system are necessary for further surgical preparation and application.


Subject(s)
Diskectomy, Percutaneous , Intervertebral Disc Displacement , Intervertebral Disc , Virtual Reality , Curriculum , Humans , Intervertebral Disc/surgery , Intervertebral Disc Displacement/surgery
17.
Neurobiol Aging ; 101: 94-108, 2021 05.
Article in English | MEDLINE | ID: mdl-33610062

ABSTRACT

Despite effective clearance of parenchymal amyloid-ß (Aß) in patients with Alzheimer's disease, Aß immunotherapy exacerbates the vascular Aß (VAß)-associated pathology in the brain. We have previously shown that BCG immunization facilitates protective monocyte recruitment to the brain of APP/PS1 mice. Here, we confirmed that the 4Aß1-15 vaccine exacerbates VAß deposits in this model, which coincides with a decrease in the number of cerebrovascular endothelial cells and pericytes, infiltration of neutrophils into the brain, and induction of cerebral microhemorrhage. Moreover, combined 4Aß1-15/BCG treatment abrogates the development of the VAß-associated pathology. In addition, BCG treatment is required for the upregulation of interleukin-10 in the brain. Notably, BCG treatment selectively enhances Aß phagocytosis by recruited macrophages. Furthermore, combined 4Aß1-15/BCG treatment is more effective than 4Aß1-15 monotherapy in synaptic preservation and the enhancement of the learning efficiency. Overall, our study suggests that the combination of Aß-targeted therapy with an immunomodulatory strategy may improve the efficacy of Aß vaccine in Alzheimer's disease.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , BCG Vaccine/administration & dosage , Brain/metabolism , Immunotherapy, Active/methods , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Animals , BCG Vaccine/pharmacology , Brain/pathology , Disease Models, Animal , Female , Interleukin-10/metabolism , Learning , Macrophages/immunology , Macrophages/pathology , Mice, Transgenic , Phagocytosis/drug effects
18.
Brain Behav Immun ; 91: 128-141, 2021 01.
Article in English | MEDLINE | ID: mdl-32956831

ABSTRACT

Immune dysfunction is implicated in Alzheimer's disease (AD), whereas systemic immune modulation may be neuroprotective. Our previous results have indicated immune challenge with Bacillus Calmette-Guerin attenuates AD pathology in animal models by boosting the systemic immune system. Similarly, independent studies have shown that boosting systemic immune system, by blocking PD-1 checkpoint pathway, modifies AD. Here we hypothesized that influenza vaccine would potentiate function of moderate dose anti-PD-1 and therefore combining them might allow reducing the dose of PD-1 antibody needed to modify the disease. We found that moderate-dose PD-1 in combination with influenza vaccine effectively attenuated cognitive deficit and prevented amyloid-ß pathology build-up in APP/PS1 mice in a mechanism dependent on recruitment of peripheral monocyte-derived macrophages into the brain. Eliminating peripheral macrophages abrogated the beneficial effect. Moreover, by comparing CD11b+ compartments in the mouse parenchyma, we observed an elevated subset of Ly6C+ microglia-like cells, which are reportedly derived from peripheral monocytes. In addition, myeloid-derived suppressor cells are strongly elevated in the transgenic model used and normalized by combination treatment, indicating restoration of brain immune homeostasis. Overall, our results suggest that revitalizing brain immunity by combining IV with moderate-dose PD-1 inhibition may represent a therapeutic immunotherapy for AD.


Subject(s)
Alzheimer Disease , Influenza Vaccines , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Cognition , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1
19.
Cell Death Dis ; 11(6): 440, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32514180

ABSTRACT

Autophagy is a major self-degradative process that maintains cellular homeostasis and function in mammalian cells. Autophagic dysfunction occurs in the early pathogenesis of Alzheimer's disease (AD) and directly regulates amyloid-ß (Aß) metabolism. Although it has been proven that the cytokine IFN-γ enhances autophagy in macrophage cell lines, whether the signaling cascade is implicated in Aß degradation in AD mouse models remains to be elucidated. Here, we found that 9 days of the intraperitoneal administration of IFN-γ significantly increased the LC3II/I ratio and decreased the level of p62 in APP/PS1 mice, an AD mouse model. In vitro, IFN-γ protected BV2 cells from Aß toxicity by upregulating the expressions of Atg7 and Atg5 and the LC3II/I ratio, whereas these protective effects were ablated by interference with Atg5 expression. Moreover, IFN-γ enhanced autophagic flux, probably through suppressing the AKT/mTOR pathway both in vivo and in vitro. Importantly, using intravital two-photon microscopy and fluorescence staining, we found that microglia interacted with exogenous IFN-γ and Aß, and surrounded Aß in APP/PS1;CX3CR1-GFP+/- mice. In addition, IFN-γ treatment decreased the Aß plaque load in the cortex and hippocampus and rescued cognitive deficits in APP/PS1 mice. Our data suggest a possible mechanism by which the peripheral injection of IFN-γ restores microglial autophagy to induce the phagocytosis of cerebral Aß, which represents a potential therapeutic approach for the use of exogenous IFN-γ in AD.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Cognition/drug effects , Injections, Intraperitoneal/methods , Interferon-alpha/therapeutic use , Microglia/drug effects , Animals , Disease Models, Animal , Male , Mice
20.
Biomed Pharmacother ; 128: 110329, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32502843

ABSTRACT

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies in the world with high relapse and mortality rates. Although oxaliplatin (OXA), a platinum-based anticancer drug, is widely used in CRC treatment, the resulting chemoresistance dramatically attenuates the drug efficacy and increases the failure rate of this therapy. Thus, the study on OXA-induced chemoresistance is extremely urgent. In recent years, emerging evidence has shown that lncRNAs play irreplaceable roles in drug resistance. However, we only have a limited knowledge of the lncRNAs that are closely related to oxaliplatin resistance in CRC. In present study, we identify and characterize these lncRNAs, including their functions, underlying mechanisms and possible applications.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm , Oxaliplatin/therapeutic use , RNA, Long Noncoding/metabolism , Animals , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic , Humans , RNA, Long Noncoding/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...