Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Physiol ; 15: 1365530, 2024.
Article in English | MEDLINE | ID: mdl-38962069

ABSTRACT

Some studies showed that a single session of transcranial direct current stimulation (tDCS) has the potential of modulating motor performance in healthy and athletes. To our knowledge, previously published systematic reviews have neither comprehensively investigated the effects of tDCS on athletic performance in both physical and psychological parameters nor investigated the effects of tDCS on high-level athletes. We examined all available research testing a single session of tDCS on strength, endurance, sport-specific performance, emotional states and cognitive performance for better application in competition and pre-competition trainings of national- or international-level athletes. A systematic search was conducted in PubMed, Web of Science, EBSCO, Embase, and Scopus up until to June 2023. Studies were eligible when participants had sports experience at a minimum of state and national level competitions, underwent a single session of tDCS without additional interventions, and received either sham tDCS or no interventions in the control groups. A total of 20 experimental studies (224 participants) were included from 18 articles. The results showed that a single tDCS session improved both physical and psychological parameters in 12 out of the 18 studies. Of these, six refer to the application of tDCS on the motor system (motor cortex, premotor cortex, cerebellum), five on dorsolateral prefrontal cortex and two on temporal cortex. The most sensitive to tDCS are strength, endurance, and emotional states, improved in 67%, 75%, and 75% of studies, respectively. Less than half of the studies showed improvement in sport-specific tasks (40%) and cognitive performance (33%). We suggest that tDCS is an effective tool that can be applied to competition and pre-competition training to improve athletic performance in national- or international-level athletes. Further research would explore various parameters (type of sports, brain regions, stimulation protocol, athlete level, and test tasks) and neural mechanistic studies in improving efficacy of tDCS interventions. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022326989, identifier CRD42022326989.

2.
Food Chem ; 456: 139936, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38865822

ABSTRACT

Large-leaf yellow tea (LYT)-derived peptides (TPP) are rich in amino acids required for damage repair, such as Glu, Arg, and Pro, and can be used to alleviate acute colitis. However, its effect and mechanisms against colitis remain unclear. This study utilized TPP to intervene in dextran sodium sulfate-induced acute colitis in C57BL/6 J mice. Results confirmed that TPP ameliorated acute colitis symptoms by inhibiting pro-inflammatory cytokines, restoring gut microbiota dysbiosis, particularly by increasing the abundance of beneficial bacteria Akkermansia and Lactobacillus while declining harmful microbiota Escherichia-Shigella. Besides, TPP intervention reshaped the gut microbiota phenotype by increasing the aerobic phenotype and reducing the potentially pathogenic phenotype. Levels of short-chain fatty acids, including acetic acid, propanoic acid, isobutyric acid, and butyric acid, were also enhanced in a dose-dependent manner to help restore gut microbiota equilibrium. This study supports using TPP as a viable plant protein-derived dietary resource for alleviating inflammatory bowel disease.

3.
Hum Mov Sci ; 96: 103240, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38875731

ABSTRACT

Transcranial direct current stimulation (tDCS) and high-intensity interval training (HIIT) have been demonstrated to enhance inhibitory control and working memory (WM) performance in healthy adults. However, the potential benefits of combining these two interventions have been rarely explored and remain largely speculative. This study aimed to explore the effects of acute HIIT combined with dual-site tDCS over the dorsolateral prefrontal cortex (DLPFC, F3 and F4) on inhibitory control and WM in healthy young adults. Twenty-five healthy college students (20.5 ± 1.3 years; 11 females) were recruited to complete HIIT + tDCS, HIIT + sham-tDCS, rest + tDCS, and rest + sham-tDCS (CON) sessions in a randomized crossover design. tDCS or sham-tDCS was conducted after completing HIIT or a rest condition of the same duration. The Stroop and 2-back tasks were used to evaluate the influence of this combined intervention on cognitive tasks involving inhibitory control and WM performance in post-trials, respectively. Response times (RTs) of the Stroop task significantly improved in the HIIT + tDCS session compared to the CON session across all conditions (all p values <0.05), in the HIIT + tDCS session compared to the rest + tDCS session in the congruent and neutral conditions (all p values <0.05), in the HIIT + sham-tDCS session compared to the CON session in the congruent and neutral conditions (all p values <0.05), in the HIIT + sham-tDCS session compared to the rest + tDCS session in the congruent condition (p = 0.015). No differences were found between sessions in composite score of RT and accuracy in the Stroop task (all p values >0.05) and in the 2-back task reaction time and accuracy (all p values >0.05). We conclude that acute HIIT combined with tDCS effectively improved inhibitory control but it failed to yield cumulative benefits on inhibitory control and WM in healthy adults. These preliminary findings help to identify beneficial effects of combined interventions on cognitive performance and might guide future research with clinical populations.

4.
Brain Sci ; 14(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38391694

ABSTRACT

BACKGROUND: The reduction of muscular hypertonia is important in the treatment of various diseases or rehabilitation. This study aims to test the efficacy of a 5 Hz mechanical muscle stimulation (tapotement massage) in comparison to a 5 Hz repetitive peripheral magnetic stimulation (rPMS) on the neuromuscular reflex response. METHODS: In a randomized control trial, 15 healthy volunteers were administered with either 5 Hz rPMS, tapotement massage, or rPMS sham stimulation. The posterior tibial nerve was stimulated with rPMS and sham stimulation. The Achilles tendon was exposed to a mechanically applied high-amplitude 5 Hz repetitive tendon tapotement massage (rTTM). The tendon reflex (TR) was measured for the spinal response of the soleus muscle. RESULTS: After rPMS, there was a reduction of the TR response (-9.8%, p ≤ 0.034) with no significant changes after sham stimulation. Likewise, TR decreased significantly (-17.4%, p ≤ 0.002) after Achilles tendon tapotement intervention. CONCLUSIONS: These findings support the hypothesis that both afferent 5 Hz sensory stimulations contributed to a modulation within the spinal and/or supraspinal circuits, which resulted in a reduction of the spinal reflex excitability. The effects could be beneficial for patients with muscle hypertonia and could improve the functional results of rehabilitation programs.

5.
Brain Sci ; 13(10)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37891731

ABSTRACT

Traumatic brain injury, cardiac arrest, intracerebral hemorrhage, and ischemic stroke may cause disorders of consciousness (DoC). Repetitive transcranial magnetic stimulation (rTMS) has been used to promote the recovery of disorders of consciousness (DoC) patients. In this meta-analysis, we examined whether rTMS can relieve DoC patient symptoms. We searched through journal articles indexed in PubMed, the Web of Science, Embase, Scopus, and the Cochrane Library until 20 April 2023. We assessed whether studies used rTMS as an intervention and reported the pre- and post-rTMS coma recovery scale-revised (CRS-R) scores. A total of 207 patients from seven trials were included. rTMS significantly improved the recovery degree of patients; the weighted mean difference (WMD) of the change in the CRS-R score was 1.89 (95% confidence interval (CI): 1.39-2.39; p < 0.00001) in comparison with controls. The subgroup analysis showed a significant improvement in CRS-R scores in rTMS over the dorsolateral prefrontal cortex (WMD = 2.24; 95% CI: 1.55-2.92; p < 0.00001; I2 = 31%) and the primary motor cortex (WMD = 1.63; 95% CI: 0.69-2.57; p = 0.0007; I2 = 14%). Twenty-hertz rTMS significantly improved CRS-R scores in patients with DoC (WMD = 1.61; 95% CI: 0.39-2.83; p = 0.010; I2 = 31%). Furthermore, CRS-R scores in rTMS over 20 sessions significantly improved (WMD = 1.75; 95% CI: 0.95-2.55; p < 0.0001; I2 = 12%). rTMS improved the symptoms of DoC patients; however, the available evidence remains limited and inadequate.

6.
Front Neurol ; 14: 1156987, 2023.
Article in English | MEDLINE | ID: mdl-37497013

ABSTRACT

Stroke is a central nervous system disease that causes structural lesions and functional impairments of the brain, resulting in varying types, and degrees of dysfunction. The bimodal balance-recovery model (interhemispheric competition model and vicariation model) has been proposed as the mechanism of functional recovery after a stroke. We analyzed how combinations of motor observation treatment approaches, transcranial electrical (TES) or magnetic (TMS) stimulation and peripheral electrical (PES) or magnetic (PMS) stimulation techniques can be taken as accessorial physical therapy methods on symptom reduction of stroke patients. We suggest that top-down and bottom-up stimulation techniques combined with action observation treatment synergistically might develop into valuable physical therapy strategies in neurorehabilitation after stroke. We explored how TES or TMS intervention over the contralesional hemisphere or the lesioned hemisphere combined with PES or PMS of the paretic limbs during motor observation followed by action execution have super-additive effects to potentiate the effect of conventional treatment in stroke patients. The proposed paradigm could be an innovative and adjunctive approach to potentiate the effect of conventional rehabilitation treatment, especially for those patients with severe motor deficits.

7.
Biology (Basel) ; 11(9)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36138847

ABSTRACT

Transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) is of increasing interest to improve motor performance in healthy adults and patients with respective deficits. This study aimed to examine whether tDCS over M1 can improve static and dynamic postural stability in young healthy adults. Seventeen healthy participants (mean age = 25.14 ± 2.50 (standard deviation, SD) years) received sham and anodal tDCS (2 mA) over the vertex at the Cz electrode position for 15 min. Static and dynamic postural stability were evaluated before and immediately after tDCS. The center of pressure (COP) sway area (COPSA) and COP maximum displacements to medio-lateral (COPML) and antero-posterior directions (COPAP) were used to evaluate static postural stability. The anterior−posterior stability index (APSI), medial−lateral stability index (MLSI), vertical stability index (VSI), dynamic postural stability index (DPSI), and time to stabilization (TTS) in forward (FL), 45° anterior lateral (LL), and 45° anterior medial (ML) direction landing, as well as the Y-balance composite score (YBTCS) were used to assess dynamic postural stability. The results showed that the LL-TTS (p = 0.044), non-dominant leg COPSA (p = 0.015), and YBTCS (p < 0.0001) were significantly improved in the real stimulation as compared with the sham stimulation session, and anodal tDCS significantly changed dominant leg COPAP (p = 0.021), FL-APSI (p < 0.0001), FL-TTS (p = 0.008), ML-TTS (p = 0.002), non-dominant leg YBTCS (p < 0.0001), and dominant leg YBTCS (p = 0.014). There were no significant differences in all obtained balance values in the sham stimulation session, except for non-dominant leg YBTCS (p = 0.049). We conclude that anodal tDCS over M1 has an immediate improving effect on static postural stability and dynamic performance in young healthy adults. This makes tDCS a promising adjuvant rehabilitation treatment to enhance postural stability deficits in the future.

8.
Front Nutr ; 9: 894916, 2022.
Article in English | MEDLINE | ID: mdl-35873416

ABSTRACT

Background: The effectiveness of low-carbohydrate diets (LCDs) on weight loss and exercise for improving cardiometabolic fitness have been well documented in the literature, but the effects of LCDs and whether adding exercise to a LCD regime could additionally benefit mental health (e. g., by lowering the level of anxiety) and associated changes in eating behavior are less clear in overweight and obese populations. Therefore, this study aimed to investigate the effects of a 4-week LCD with or without exercise on anxiety and eating behavior, and to explore the associations between changes in the psychological state and physiological parameters (i.e., body composition, aerobic fitness, blood pressure, lipid profile, and metabolic hormones). Methods: Seventy-four overweight Chinese women [age: 20.8 ± 3.0 years, body mass index (BMI): 25.3 ± 3.3 kg·m-2] completed the 4-week randomized controlled trial, which included a LCD group (i.e., ~50 g daily carbohydrate intake) with exercise training 5 days/week (LC-EXE, n = 26), a LCD group without exercise training (LC-CON, n = 25) and a control group that did not modify their habitual diets and physical activity (CON, n = 23). Levels of anxiety, eating behavior scores and physiological parameters (i.e., body weight, V̇O2peak, blood pressure, fasting glucose, blood lipids, and serum metabolic hormones including insulin, C-peptide, leptin, and ghrelin) were measured before and after the intervention. Results: There were significant reductions in anxiety levels in the LC-EXE compared with the LC-CON group, while no statistical changes were found in eating behaviors in any conditions after the 4-week intervention. Significant reduction in weight (~3.0 kg or 4%, p < 0.01) and decreases in insulin (~30% p < 0.01), C-peptide (~20% p < 0.01), and leptin (~40%, p < 0.01) were found in both LC-CON and LC-EXE groups, but adding exercise to a LCD regime generated no additional effects. There were significant improvements in V̇O2peak (~15% p < 0.01) and anxiety (~25% p < 0.01) in the LC-EXE compared with the LC-CON group, while no statistical differences were found between CON and LC-CON treatments. Further analysis revealed a negative association (r = -0.32, p < 0.01) between changes in levels of anxiety and changes in V̇O2peak in all participates, no other correlations were found between changes in psychological and physiological parameters. Conclusion: Although the combination of a LCD and exercise may not induce additional reductions in body weight in overweight young females, exercise could be a useful add-on treatment along with a LCD to improve cardiometabolic health and lower anxiety levels.

9.
Front Cardiovasc Med ; 9: 845225, 2022.
Article in English | MEDLINE | ID: mdl-35282360

ABSTRACT

Background: Studies have shown that high-intensity interval training (HIIT) is superior to moderate-intensity continuous training (MICT) for increasing peak oxygen uptake (VO2peak) and reducing cardiovascular disease (CVD) and mortality. To our knowledge, previously published systematic reviews have neither compared different HIIT models with MICT nor investigated intervention frequencies of HIIT vs. MICT for purposes of improving cardiorespiratory fitness in patients with CVD. Objective: The purpose of this meta-analysis was to compare the effects of different training models, intervention frequencies and weeks of HIIT vs. MICT on changes in cardiorespiratory fitness during cardiac rehabilitation (CR). Methods: A systematic search was carried out for research articles on randomized controlled trials (RCTs) indexed in the PubMed, Cochrane Library, Web of Science, Embase and Scopus databases for the period up to December 2021. We searched for RCTs that compared the effect of HIIT vs. MICT on cardiorespiratory fitness in patients with CVD. Results: Twenty-two studies with 949 participants (HIIT: 476, MICT: 473) met the inclusion criteria. Sensitivity analysis revealed that HIIT increased VO2peak more than MICT (MD = 1.35). In the training models and durations, there was a greater increase in VO2peak with medium-interval HIIT (MD = 4.02) and more than 12 weeks duration (MD = 2.35) than with MICT. There were significant improvements in VO2peak with a HIIT frequency of 3 times/week (MD = 1.28). Overall, one minor cardiovascular and four non-cardiovascular adverse events were reported in the HIIT group, while six non-cardiovascular adverse events were reported in the MICT group. Conclusion: HIIT is safe and appears to be more effective than MICT for improving cardiorespiratory fitness in patients with CVD. Medium-interval HIIT 3 times/week for more than 12 weeks resulted in the largest improvement in cardiorespiratory fitness during CR. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021245810, identifier: CRD42021245810.

10.
J Pers Med ; 11(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34683120

ABSTRACT

The present study aimed to investigate the effect of transcranial alternating current stimulation (tACS) on the primary motor cortex (M1) during action observation, and subsequent action execution, on motor cortex excitability. The participants received tACS at 10 Hz or 20 Hz, or a sham stimulation over the left M1 for 10 min while they observed a video displaying a repeated button-tapping task using the right hand, and then performed an identical task with their right hand. Motor-evoked potential (MEP) amplitudes were measured before (T0) and after the action observation paired with tACS or a sham stimulation (T1), and after the performance of the action (T2). The results showed that MEPs were significantly reduced at time point T1 (p = 0.042, Cohen's d = 0.611) and T2 (p = 0.0003, Cohen's d = 0.852) in the 20 Hz tACS condition, in contrast with the sham stimulation. There was a significantly smaller MEP amplitude at time point T2 in the 20 Hz tACS condition, as compared to the 10 Hz tACS condition (p = 0.01, Cohen's d = 0.622), but the MEP amplitude did not significantly change at time point T1 between the 20 Hz and 10 Hz tACS conditions (p = 0.136, Cohen's d = 0.536). There were no significant differences at time point T1 and T2 between the 10 Hz tACS condition and the sham stimulation. We conclude that 20 Hz tACS during action observation inhibited motor cortex excitability and subsequently inhibited execution-related motor cortex excitability. The effects of tACS on task-related motor cortex excitability are frequency-dependent.

11.
Brain Sci ; 11(9)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34573140

ABSTRACT

BACKGROUND: Brain stimulation motor-evoked potentials (MEPs) are transient signals and not periodic signals, and thus, they differ significantly in their properties from classical surface electromyograms. Unsuitable pre-processing of MEPs due to inappropriate filter settings leads to distortions. Filtering of extensor carpi radialis MEPs with transient signal characteristics of 20 subjects was examined. The effects of a 1st-order Butterworth high-pass filter (HPF) with different cut-off frequencies 1 Hz, 20 Hz, 40 Hz, and 80 Hz and a 5 Hz Butterworth high-pass filter with degrees 1st, 2nd, 4th, 8th-order are investigated for the filter output. RESULTS: The filtering of the MEPs with an inappropriate filter setting led to distortions on the parameters peak-to-peak amplitudes of the MEP (MEPpp) and the absolute integral of the MEP (MEParea). The lowest distortions of all of the examined filter parameters were revealed after filtering with the lowest filter order and the lowest cut-off frequency. The 1st-order 1 Hz HPF calculation results in a difference of -0.53% (p < 0.001) for the MEPpp and -1.94% (p < 0.001) for the MEParea. SIGNIFICANCE: Reproducibility is a major concern in science, including brain stimulation research. Only the filtering of the MEPs with appropriate filter settings led to mostly undistorted MEPs.

12.
Int J Neuropsychopharmacol ; 24(6): 490-498, 2021 07 14.
Article in English | MEDLINE | ID: mdl-33617635

ABSTRACT

BACKGROUND: Noradrenaline has an important role as a neuromodulator of the central nervous system. Noradrenergic enhancement was recently shown to enhance glutamate-dependent cortical facilitation and long term potentiation-like plasticity. As cortical excitability and plasticity are closely linked to various cognitive processes, here we aimed to explore whether these alterations are associated with respective cognitive performance changes. Specifically, we assessed the impact of noradrenergic enhancement on motor learning (serial reaction time task), attentional processes (Stroop interference task), and working memory performance (n-back letter task). METHODS: The study was conducted in a cross-over design. Twenty-five healthy humans performed the respective cognitive tasks after a single dose of the noradrenaline reuptake inhibitor reboxetine or placebo administration. RESULTS: The results show that motor learning, attentional processes, and working memory performance in healthy participants were improved by reboxetine application compared with placebo. CONCLUSIONS: The results of the present study thus suggest that noradrenergic enhancement can improve memory formation and executive functions in healthy humans. The respective changes are in line with related effects of noradrenaline on cortical excitability and plasticity.


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Attention/drug effects , Learning/drug effects , Memory, Short-Term/drug effects , Motor Activity/drug effects , Nootropic Agents/pharmacology , Norepinephrine , Reboxetine/pharmacology , Adrenergic Uptake Inhibitors/administration & dosage , Adult , Cross-Over Studies , Female , Humans , Male , Nootropic Agents/administration & dosage , Reboxetine/administration & dosage , Young Adult
13.
Front Neurol ; 10: 930, 2019.
Article in English | MEDLINE | ID: mdl-31507528

ABSTRACT

Background: The reduction of muscle hypertonia and spasticity, as well as an increase in mobility, is an essential prerequisite for the amelioration of physiotherapeutical treatments. Repetitive peripheral magnetic nerve stimulation (rPMS) is a putative adjuvant therapy that improves the mobility of patients, but the underlying mechanism is not entirely clear. Methods: Thirty-eight participants underwent either an rPMS treatment (N = 19) with a 5 Hz stimulation protocol in the posterior tibial nerve or sham stimulation (N = 19). The stimulation took place over 5 min. The study was conducted in a pre-test post-test design with matched groups. Outcome measures were taken at the baseline and after following intervention. Results: The primary outcome was a significant reduction of the reflex activity of the soleus muscle, triggered by a computer-aided tendon-reflex impact. The pre-post differences of the tendon reflex response activity were -23.7% (P < 0.001) for the treatment group. No significant effects showed in the sham stimulation group. Conclusion: Low-frequency magnetic stimulation (5 Hz rPMS) shows a substantial reduction of the tendon reflex amplitude. It seems to be an effective procedure to reduce muscular stiffness, increase mobility, and thus, makes the therapeutic effect of neuro-rehabilitation more effective. For this reason, the 5 Hz rPMS treatment might have the potential to be used as an adjuvant therapy in the rehabilitation of gait and posture control in patients suffering from limited mobility due to spasticity. The effect observed in this study should be investigated conjoined with the presented method in patients with impaired mobility due to spasticity.

14.
Brain Sci ; 9(5)2019 May 26.
Article in English | MEDLINE | ID: mdl-31130692

ABSTRACT

The aim of this randomized sham-controlled study was to examine the impact of cathodal transcranial direct current stimulation (ctDCS) of the primary motor cortex (M1) during movement observation on subsequent execution-related motor cortex activity. Thirty healthy participants received sham or real ctDCS (1 mA) over the left M1 for 10 minutes, respectively. The participants observed a video showing repeated button pressing tasks of the right hand during the sham or real ctDCS, followed by performance of these tasks by the right hand. Motor-evoked potentials (MEP) were recorded from the resting right first dorsal interosseous muscle before movement observation during the sham or real ctDCS, immediately after observation of actions, and after subsequent movement execution. The results of the ANOVA showed a significant main effect on the group (F1,28 = 4.60, p = 0.041) and a significant interaction between time and the group (F2,56 = 5.34, p = 0.008). As revealed by respective post hoc tests, ctDCS induced a significant reduction of MEP amplitudes in connection with movement observation (p = 0.026, Cohen's d = 0.861) and after subsequent movement execution (p = 0.018, Cohen's d = 0.914) in comparison with the sham stimulation. It is concluded that ctDCS during movement observation was effective in terms of modulating motor cortex excitability. Moreover, it subsequently influenced execution-related motor cortex activity. This indicates a possible application for rehabilitative treatment in syndromes with pathologically enhanced cortical activity.

15.
Front Neurosci ; 13: 69, 2019.
Article in English | MEDLINE | ID: mdl-30792626

ABSTRACT

Pathways of the human mirror neuron system are activated during both, action observation and action execution, including lateralized activation of respective areas, as shown by observed right-or left-hand actions. Here, we investigated whether execution-dependent motor cortex excitability is affected by prior interaction between transcranial random noise stimulation (tRNS) and action observation. Sham or real tRNS (1 mA) was applied for 10-min over the left primary motor cortex during action observation. In the main experiments, participants received sham or real tRNS while they watched a video showing repeated tapping tasks, involving either the right-hand (Experiment 1, congruent action observation), or a mirror-reversed video showing the same performance (Experiment 2), followed by action execution of the right-hand. In control Experiments 1-3, participants received real tRNS while observing a perceptual sequence, watching a landscape picture, or observing the left-hand performing the action (the sequence was identical to Experiment 1), followed by action execution of the right-hand. In control Experiment 4, participants received real tRNS during congruent action observation, and then took 6-min rest. Motor-evoked potentials (MEP) were recorded before action observation, a perceptual sequence or a landscape picture, immediately after, and after action execution, or an interval of 6-min, dependent on the respective experimental condition. MEPs in the right first dorsal interosseous muscle increased significantly after real tRNS combined with congruent action observation, and after action execution compared to the sham session in Experiment 1 and control experiments. We conclude that prior interaction between real tRNS and action observation of mirror-matched movements modulates subsequent execution-dependent motor cortex excitability.

16.
J Exerc Sci Fit ; 13(2): 117-122, 2015 Dec.
Article in English | MEDLINE | ID: mdl-29541109

ABSTRACT

BACKGROUND/OBJECTIVE: This research examines whether or not the Yo-Yo testing performance could reflect the repeatability of high-intensity intermittent dribbling in adolescent basketball players. METHODS: Thirty-six teenage basketball players aged 13-18 years were invited to participate in this study. RESULTS: A test-retest showed that the Yo-Yo intermittent endurance Level 2 (IE2) test with dribbling (intraclass correlation coefficient = 0.92; coefficient of variation = 12.6%; d = 0.24) and without dribbling (intraclass correlation coefficient = 0.83; coefficient of variation = 15.0%; d = 0.37) had acceptable reliability. The dribbling distance covered was significantly shorter than was the running performance of the Yo-Yo IE2 test in participants younger than 15 years (junior; 1138 ± 417 m vs. 910 ± 299 m, p < 0.01; d = 0.65), as well as in the entire study sample (1077 ± 398 m vs. 1267 ± 437 m, p < 0.05; d = 0.45), whereas there was no significant difference in the senior players between the two protocols (1396 ± 436 m vs. 1244 ± 427 m, p > 0.05; d = 0.35). Moderate to large correlations were found between running and dribbling performances in the senior sample (r = 0.57, p = 0.06), the junior sample (r = 0.87, p < 0.01), and the whole (r = 0.72, p < 0.01) sample, respectively. CONCLUSION: The results suggest that the Yo-Yo IE2 test could reflect the repeatability of high-intensity intermittent basketball dribbling performance, while dribbling skills may have different influences on high-intensity intermittent exercise capacity in adolescent players at different ages.

SELECTION OF CITATIONS
SEARCH DETAIL
...