Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
World J Gastrointest Oncol ; 16(6): 2742-2756, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994144

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. Platelets (PLTs) are known to play a key role in the maintenance of liver homeostasis and the pathophysiological processes of a variety of liver diseases. Aspirin is the most classic antiplatelet agent. However, the molecular mechanism of platelet action and whether aspirin can affect HCC progression by inhibiting platelet activity need further study. AIM: To explore the impact of the antiplatelet effect of aspirin on the development of HCC. METHODS: Platelet-rich plasma, platelet plasma, pure platelet, and platelet lysate were prepared, and a coculture model of PLTs and HCC cells was established. CCK-8 analysis, apoptosis analysis, Transwell analysis, and real-time polymerase chain reaction (RT-PCR) were used to analyze the effects of PLTs on the growth, metastasis, and inflammatory microenvironment of HCC. RT-PCR and Western blot were used to detect the effects of platelet activation on tumor-related signaling pathways. Aspirin was used to block the activation and aggregation of PLTs both in vitro and in vivo, and the effect of PLTs on the progression of HCC was detected. RESULTS: PLTs significantly promoted the growth, invasion, epithelial-mesenchymal transition, and formation of an inflammatory microenvironment in HCC cells. Activated PLTs promoted HCC progression by activating the mitogen-activated protein kinase/protein kinase B/signal transducer and activator of transcription three (MAPK/ AKT/STAT3) signaling axis. Additionally, aspirin inhibited HCC progression in vitro and in vivo by inhibiting platelet activation. CONCLUSION: PLTs play an important role in the pathogenesis of HCC, and aspirin can affect HCC progression by inhibiting platelet activity. These results suggest that antiplatelet therapy has promising application prospects in the treatment and combined treatment of HCC.

2.
Theor Appl Genet ; 134(2): 505-518, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33140169

ABSTRACT

KEY MESSAGE: Anatomical changes in and hormone roles of the exserted stigma were investigated, and localization and functional analysis of SlLst for the exserted stigma were performed using SLAF-BSA-seq, parental resequencing and overexpression of SlLst in tomato. Tomato accession T431 produces stigmas under relatively high temperatures (> 27 °C, the average temperature in Harbin, China, in June-August), so pollen can rarely reach the stigma properly. This allows the percentage of male sterility exceed 95%, making the use of this accession practical for hybrid seed production. To investigate the mechanism underlying the exserted stigma male sterility, the morphological changes of, anatomical changes of, and comparative endogenous hormone (IAA, ABA, GA3, ZT, SA) changes in flowers during flower development of tomato accessions DL5 and T431 were measured. The location and function of genes controlling exserted stigma sterility were analyzed using super SLAF-BSA-seq, parental resequencing, comparative genomics and the overexpression of SlLst in tomato. The results showed that an increase in cell number mainly caused stigma exsertion. IAA played a major role, while ABA had an opposite effect on stigma exertion. Moreover, 26 candidate genes related to the exserted stigma were found, located on chromosome 12. The Solyc12g027610.1 (SlLst) gene was identified as the key candidate gene by functional analysis. A subcellular localization assay revealed that SlLst is targeted to the nucleus and cell membrane. Phenotypic analysis of SlLst-overexpressing tomato showed that SlLst plays a crucial role during stigma exsertion.


Subject(s)
Flowers/anatomy & histology , Gene Expression Regulation, Plant , Plant Infertility , Plant Proteins/metabolism , Quantitative Trait Loci , Seeds/anatomy & histology , Solanum lycopersicum/anatomy & histology , Flowers/genetics , Flowers/growth & development , Genetic Markers , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Plant Proteins/genetics , Seeds/genetics , Seeds/growth & development
3.
Phytopathology ; 111(3): 485-495, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32772808

ABSTRACT

Chloroplast ATP synthase (cpATPase) is responsible for ATP production during photosynthesis. Our previous studies showed that the cpATPase CF1 α subunit (AtpA) is a key protein involved in Clonostachys rosea-induced resistance to the fungus Botrytis cinerea in tomato. Here, we show that expression of the tomato atpA gene was upregulated by B. cinerea and Clonostachys rosea. The tomato atpA gene was then isolated, and transgenic tobacco lines were obtained. Compared with untransformed plants, atpA-overexpressing tobacco showed increased resistance to B. cinerea, characterized by reduced disease incidence, defense-associated hypersensitive response-like reactions, balanced reactive oxygen species, alleviated damage to the chloroplast ultrastructure of leaf cells, elevated levels of ATP content and cpATPase activity, and enhanced expression of genes related to carbon metabolism, photosynthesis, and defense. Incremental Ca2+ efflux and steady H+ efflux were observed in transgenic tobacco after inoculation with B. cinerea. In addition, overexpression of atpA conferred enhanced tolerance to salinity and resistance to the fungus Cladosporium fulvum. Thus, AtpA is a key regulator that links signaling to cellular redox homeostasis, ATP biosynthesis, and gene expression of resistance traits to modulate immunity to pathogen infection and provides broad-spectrum resistance in plants in the process.


Subject(s)
Solanum lycopersicum , Ascomycota , Botrytis , Chloroplast Proton-Translocating ATPases , Disease Resistance/genetics , Gene Expression Regulation, Plant , Humans , Hypocreales , Solanum lycopersicum/genetics , Plant Diseases , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...