Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Adv Sci (Weinh) ; 11(7): e2306143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38083984

ABSTRACT

Macrophages are heterogenic phagocytic cells that play distinct roles in physiological and pathological processes. Targeting different types of macrophages has shown potent therapeutic effects in many diseases. Although many approaches are developed to target anti-inflammatory macrophages, there are few researches on targeting pro-inflammatory macrophages, which is partially attributed to their non-s pecificity phagocytosis of extracellular substances. In this study, a novel recombinant protein is constructed that can be anchored on an exosome membrane with the purpose of targeting pro-inflammatory macrophages via antigen recognition, which is named AnCar-ExoLaIMTS . The data indicate that the phagocytosis efficiencies of pro-inflammatory macrophages for different AnCar-ExoLaIMTS show obvious differences. The AnCar-ExoLaIMTS3 has the best targeting ability for pro-inflammatory macrophages in vitro and in vivo. Mechanically, AnCar-ExoLaIMTS3 can specifically recognize the leucine-rich repeat domain of the TLR4 receptor, and then enter into pro-inflammatory macrophages via the TLR4-mediated receptor endocytosis pathway. Moreover, AnCar-ExoLaIMTS3 can efficiently deliver therapeutic cargo to pro-inflammatory macrophages and inhibit the synovial inflammatory response via downregulation of HIF-1α level, thus ameliorating the severity of arthritis in vivo. Collectively, the work established a novel gene/drug delivery system that can specifically target pro-inflammatory macrophages, which may be beneficial for the treatments of arthritis and other inflammatory diseases.


Subject(s)
Arthritis , Macrophages , Humans , Macrophages/metabolism , Arthritis/drug therapy , Phagocytosis , Anti-Inflammatory Agents/therapeutic use , Cell Communication
2.
Zhonghua Shao Shang Za Zhi ; 29(4): 338-43, 2013 Aug.
Article in Chinese | MEDLINE | ID: mdl-24351532

ABSTRACT

OBJECTIVE: To study the effects of the panthenol-glutamine on intestinal damage and motor function of intestine in rats with burn injury as well as its dose-effect relationship. METHODS: (1) Experiment 1. Ninety SD rats were divided into groups A-I according to the random number table, with 10 rats in each group. Rats in groups A-I were inflicted with 30% TBSA full-thickness burn and fed by gavage with panthenol and glutamine at post injury hour (PIH) 4, in the whole dosage of 1.00 and 4, 0.50 and 4, 0.25 and 4, 1.00 and 2, 0.50 and 2, 0.25 and 2, 1.00 and 1, 0.50 and 1, 0.25 and 1 g·kg(-1)·d(-1). The feeding was carried out twice a day to achieve the total dosage in 7 days. On drug withdrawal day, blood and intestinal tissue were harvested to detect the intestinal propulsion index, diamine oxidase (DAO) activity in serum, and the content of acetylcholine and intestinal mucosa protein. The best proportion of panthenol and glutamine was screened. (2) Experiment 2. Seventy SD rats were divided into normal control (NC), burn (B), burn+panthenol (B+P), burn+glutamine (B+G), and burn+low, moderate, or high dose of panthenol-glutamine (B+LPG, B+MPG, B+HPG) groups according to the random number table, with 10 rats in each group. Rats in the latter 6 groups were inflicted with 30% TBSA full-thickness burn. Rats in the latter 5 groups were fed by gavage with panthenol and (or) glutamine at PIH 4. Rats in group B+P were fed with panthenol for 1 g·kg(-1)·d(-1), rats in group B+G with glutamine for 4 g·kg(-1)·d(-1), rats in groups B+LPG, B+MPG, and B+HPG with panthenol and glutamine in the dosage of 0.50 and 2, 1.00 and 4, 2.00 and 8 g·kg(-1)·d(-1). The feeding was carried out twice a day to achieve the total dosage for 7 days. The indexes and time point for observation were the same as those of experiment 1. Meanwhile, the pathological change in intestine was observed. The same process was carried out in the rats of group NC. Data were processed with factorial designed analysis of variance (ANOVA), one-way ANOVA and Fisher's exact probability test. LSD was applied for paired comparison. RESULTS: (1) The values of intestinal propulsion index and intestinal mucosa protein content in groups A and B were close (with P values all above 0.05), and were significantly higher than those of the other 7 groups (with P values all below 0.01). Content of acetylcholine in group A was significantly higher than that of the other 8 groups (with P values all below 0.01). DAO activity in groups A, D, and E was close in value (with P values all above 0.05), and all of the values were significantly lower than those of the other 6 groups (with P values all below 0.01). The best proportion of panthenol and glutamine was 1.00 and 4 g·kg(-1)·d(-1). (2) Compared with those of group NC, the intestinal propulsion index, the contents of acetylcholine and intestinal mucosa protein were decreased significantly, while the DAO activity obviously increased in group B (with P values all below 0.01); the intestinal propulsion index was decreased significantly in group B+P (P < 0.01); the intestinal propulsion index and content of acetylcholine were decreased significantly in group B+G (with P values all below 0.01); the intestinal propulsion index was decreased significantly in group B+LPG (P < 0.01); no obvious change was observed in groups B+MPG and B+HPG (with P values all above 0.05). Compared with those of group B [0.50 ± 0.07, (69 ± 10) µg/mL, (26 ± 11) µg/g, (0.672 ± 0.145) U/mL], the contents of acetylcholine and intestinal mucosa protein were increased significantly, DAO activity decreased significantly in group B+P (with P values all below 0.01); the contents of intestinal mucosa protein was increased significantly, DAO activity decreased significantly in group B+G (with P values all below 0.01); the contents of acetylcholine and intestinal mucosa protein were increased significantly in group B+LPG (with P values all below 0.01); the intestinal propulsion index, the contents of acetylcholine and intestinal mucosa protein were increased significantly, while the DAO activity obviously decreased in groups B+MPG and B+HPG [0.66 ± 0.07, 0.68 ± 0.05; (163 ± 24), (168 ± 15) µg/mL; (57 ± 7), (57 ± 7) µg/g; (0.203 ± 0.070), (0.193 ± 0.068) U/mL, with P values all below 0.01]. The levels of the four indexes in groups B+MPG and B+HPG were close or the same in values (with P values all above 0.05). Compared with those of group B, the numbers of rats with irregularly arranged villi in group B+P were decreased significantly (P < 0.05); the numbers of rats with villi decreased in height, irregularly arranged villi, and neutrophil infiltration in group B+G were decreased significantly (with P values all below 0.05); the numbers of rats with villi decreased in height, irregularly arranged villi, degeneration and necrosis of cells, and neutrophil infiltration in group B+LPG were decreased significantly (with P values all below 0.05); the numbers of rats with villi decreased in height and number, irregularly arranged villi, degeneration and necrosis of cells, and neutrophil infiltration in groups B+MPG and B+HPG were decreased significantly (with P values all below 0.05). There was no statistically significant difference between group B+HPG and group B+MPG for the former mentioned five indexes (with P values all above 0.05). CONCLUSIONS: Combined application of panthenol and glutamine can obviously reduce intestinal mucosa damage and promote gastrointestinal motility of rats with burn injury, and they show curative effect superior to exclusive use of either of the two drugs. The best proportion of panthenol and glutamine is 1.00 and 4 g·kg(-1)·d(-1).


Subject(s)
Burns/physiopathology , Glutamine/pharmacology , Intestines/drug effects , Pantothenic Acid/analogs & derivatives , Animals , Dose-Response Relationship, Drug , Female , Gastrointestinal Motility/drug effects , Intestinal Mucosa/drug effects , Intestine, Small , Male , Pantothenic Acid/pharmacology , Rats , Rats, Sprague-Dawley
3.
Cancer Lett ; 284(2): 182-8, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19435649

ABSTRACT

Since multicellular resistance (MCR) has been shown to be as adhesion-dependent, the role of alphav integrin in MCR of HT29 was investigated in this paper. Down-regulation of alphav integrin reduced MCR to oxaliplatin, but did not detectably change the drug sensitivity of monolayers. Down-regulation of alphav integrin decreased phosphorylated NF-kappaB p65 and increased phosphorylated JNK2 in multicellular spheroids. Cell-cell adhesion and cell-cell junctions in multicellular spheroids resembled the in vivo situation. Since force, including adhesion, can activate alphav integrin, cell-cell contact may contribute to activation of alphav integrin, through which increasing phosphorylated p65 and decreasing phosphorylated JNK2 takes part in MCR.


Subject(s)
Adenocarcinoma/pathology , Colonic Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Genetic Therapy , Genetic Vectors/pharmacology , Integrin alphaV/genetics , RNA Interference , RNA, Small Interfering/pharmacology , Retroviridae/genetics , Adenocarcinoma/therapy , Animals , Antineoplastic Agents, Alkylating/pharmacology , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Line, Tumor/drug effects , Cell Line, Tumor/transplantation , Colonic Neoplasms/therapy , Down-Regulation/drug effects , Genetic Vectors/therapeutic use , Integrin alphaV/biosynthesis , MAP Kinase Kinase 7/metabolism , Mice , Neoplasm Proteins/metabolism , Organoplatinum Compounds/pharmacology , Oxaliplatin , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/genetics , Spheroids, Cellular/drug effects , Transcription Factor RelA/metabolism , Xenograft Model Antitumor Assays
4.
Zhonghua Shao Shang Za Zhi ; 22(4): 258-61, 2006 Aug.
Article in Chinese | MEDLINE | ID: mdl-17175639

ABSTRACT

OBJECTIVE: To establish Caco2 cell line with stable expression of glucagon like peptide-2 receptor( GLP-2R) , in order to establish an in vitro model for the study of protective mechanism of GLP-2 of the intestinal tract. METHODS: The GLP-2R/pcDNA3. 1 ( + ) plasmid was verified by restriction endonuclease and sequencing , and then it was transfected into Caco2 cells with lipofectamine. After G418 selection, the clones with stable expression of GLP-2R were obtained by limited dilution cloning and expanding. The mRNA and protein expression of GLP-2R in normal human intestine, Caco2 cells, HER293, VE cells, as well as in transfected Caco2 cells were determined with RT-PCR and Western blot. RESULTS: The sequence of GLP-2R/pcDNA 3. 1 plasmid was correct. No expression of GLP-2R mRNA and protein was found in HER293 and VE cells, but weak expression were found in Caco2 cells, and strong expression was found in normal human intestines. The expression of GLP-2R mRNA and protein expression in Caco2/GLP-2R ( + ) cells were obviously increased after transfection. CONCLUSION: GLP-2R has special distribution. The expression of GLP-2R is weak in normal Caco2 cells. The establishment of Caco2/GLP-2R ( + ) cellular model is beneficial for the further research of the mechanism of action of GLP-2.


Subject(s)
Glucagon-Like Peptide 2/metabolism , Receptors, Glucagon/metabolism , Transfection , Caco-2 Cells , Cellular Structures/metabolism , Cloning, Molecular , Gene Expression , Genetic Vectors , Glucagon-Like Peptide 2/genetics , Glucagon-Like Peptide-2 Receptor , Humans , Receptors, Glucagon/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...