Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 18(12): 8085-8093, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30189923

ABSTRACT

Due to the dual role as an electron acceptor and an electron donor in solution, carbon dots (Cdots) have broad applications in environmental analysis, biological detection, and biosensors. Herein, we report a facile-green strategy for a large-scale synthesis of fluorescent N, P-doped carbon dots (N, P-Cdots) with an absolute quantum yield of 66.08% by a simple one-step thermal decomposition. Glucose was selected as a carbon precursor and tryptophan (Trp) as an N-doping and passivation reagent. Organic polar solvents with a high boiling point, i.e., ethylene glycol and glycerol, were used as the reaction medium, and phosphoric acid was employed as a P source and oxidation accelerator. It is shown that the emission wavelength of the N, P-Cdots can be tuned by adjusting the reaction conditions, such as mass ratio, heating time, temperature, and medium, without further passivation. Finally, advantage was taken of the superior fluorescent characteristics of N, P-Cdots to detect selectively and with high sensitivity a cancer marker, carcinoembryonic antigen (CEA), based on the fluorescent quenching mechanism. Additionally, CEA was also detected in human serum samples with high efficiency and RSD, further confirming that the proposed method has a good consistency and stability for supersensitive fluorimetric detection of cancer markers.


Subject(s)
Biosensing Techniques , Neoplasms , Quantum Dots , Carbon , Fluorescent Dyes , Humans , Neoplasms/diagnosis
2.
J Biomed Nanotechnol ; 14(6): 1117-1124, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29843876

ABSTRACT

Carbon dots, as a potential substitute for semiconductor quantum dots, have drawn great interest in recent years. The preparation of fluorescent carbon dots has been made easy with many significant advances, but the complicated purifying processes, low quantum yield, and blue emission wavelength still limit its wider application in biosensors, biomedicine, and photonic devices. Here we report a strategy to synthesis Gd-doped carbon dots (Gd-Cdots) of super-high quantum yield with a microwave assisted hydrothermal method. The Gd-Cdots, with a diameter of 47∼8 nm, can be purified easily with conventional centrifugal techniques. Carbon microparticles (CMPs) have also been synthesized with a similar procedure. Meanwhile, we demonstrated a novel "turn-off-on" fluorescent biosensor, which has been developed for highly sensitive detection of glucose using Gd-doped carbon dots as probes. The proposed biosensor has exhibited low-cost and non-toxic properties, with high sensitivity and good specificity. In addition, the results in real blood samples further confirmed it as a promising application in diabetes diagnosis.


Subject(s)
Quantum Dots , Carbon , Fluorescent Dyes , Gadolinium , Glucose , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...