Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 669: 95-103, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38705116

ABSTRACT

Developing a high-activity and low-cost catalyst to reduce the anodic overpotential is essential for hydrogen production from water splitting. In this work, a hetero-structured Co7Fe3/Mo2C@C catalyst has been developed to efficiently catalyze oxygen evolution reaction (OER), the overpotential (ƞ10) of Co7Fe3/Mo2C@C-catalyzed OER with current density of 10 mA/cm2 is about 254 mV, substantially lower than the counterparts of Co7Fe3@C-catalyzed OER (ƞ10, 308 mV) and Mo2C@C-catalyzed OER (ƞ10, 439 mV), close to that of OER catalyzed by commercial RuO2. The mechanistic studies reveal that the distinct electron transfer across the Co7Fe3/Mo2C interface results in electron-deficient Co7Fe3, which has been identified as the highly active catalytic sites. Density functional theory (DFT) calculations manifest that Mo2C induces a distinct decrease in electron density on Co7Fe3 and upgrades the d-band centers of Co and Fe in Co7Fe3 towards Fermi energy level, thus substantially lowering the energy barrier of the rate-determining reaction step and conferring significantly improved OER activity on the Co7Fe3/Mo2C@C catalyst.

2.
J Hazard Mater ; 470: 134261, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608589

ABSTRACT

Nitrate reduction reaction (NO3RR) is deemed a promising pathway for both ammonia synthesis and water purification. Developing a high-efficiency catalyst with excellent NH3 selectivity and catalytic stability is desirable but remains challenging. In this work, a dendritic copper oxide catalyst (Cu-B2) has been developed to efficiently catalyze NO3RR for ammonia production, the Cu-B2 exhibits excellent catalytic performance, achieving an NH3 Faradaic efficiency as high as 94 % and an NH3 yield of 16.9 mg h-1 cm-2 with a current density of 192.3 mA cm-2 at - 0.6 V (vs. RHE, reversible hydrogen electrode). During NO3RR testing, the Cu-B2 catalysts are reduced in situ to form highly active Cu0/Cu+ sites, while retaining its dendritic morphology. Compared with other catalysts, the Cu-O bond in Cu-B2 catalyst has weaker polarity, resulting in Cu0/Cu+ sites in lower oxidation states. In situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) studies reveal the Cu-B2 catalyst exhibits a potential-independent capability for *NO3- adsorption and high conversion efficiency of NO2- intermediate into ammonia, DFT calculations reveal that Cu-B2 exhibts higher NO3- adsorption energy and lower NO3- adsorption energy barrier than Cu-B1, thus endowing it with a remarkably improved catalytic activity and durability.

3.
J Colloid Interface Sci ; 648: 558-566, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37307612

ABSTRACT

Highly efficient electrocatalyst for carbon dioxide reduction (CO2RR) is desirable for converting CO2 into carbon-based chemicals and reducing anthropogenic carbon emission. Regulating catalyst surface to improve the affinity for CO2 and the capability of CO2 activation is the key to high-efficiency CO2RR. In this work, we develop an iron carbide catalyst encapsulated in nitrogenated carbon (SeN-Fe3C) with an aerophilic and electron-rich surface by inducing preferential formation of pyridinic-N species and engineering more negatively charged Fe sites. The SeN-Fe3C exhibits an excellent CO selectivity with a CO Faradaic efficiency (FE) of 92 % at -0.5 V (vs. RHE) and remarkably enhanced CO partial current density as compared to the N-Fe3C catalyst. Our results demonstrate that Se doping reduces the Fe3C particle size and improves the dispersion of Fe3C on nitrogenated carbon. More importantly, the preferential formation of pyridinic-N species induced by Se doping endows the SeN-Fe3C with an aerophilic surface and improves the affinity of the SeN-Fe3C for CO2. Density functional theory (DFT) calculations reveal that the electron-rich surface, which is caused by pyridinic N species and much more negatively charged Fe sites, leads to a high degree of polarization and activation of CO2 molecule, thus conferring a remarkably improved CO2RR activity on the SeN-Fe3C catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...