Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 167: 107383, 2022 09.
Article in English | MEDLINE | ID: mdl-35952467

ABSTRACT

Iopamidol (IPM) is widely used in medical clinical examination and treatment and has immeasurable harm to the ecological environment. The combination of UV and sulfite (UV/sulfite) process was developed to degrade IPM in this study. In contrast to that almost no removal of IPM was observed under sulfite reduction alone, the UV/sulfite process could efficiently reductively degrade IPM with the observed rate constant (kobs) of 2.08 min-1, which was nearly 4 times that of UV irradiation alone. The major active species in the UV/sulfite process were identified as hydrated electrons (eaq-) by employing active species scavengers. The influence of the initial pH, sulfite dosage, IPM concentration, UV intensity and common water matrix were evaluated. The degradation of IPM reached nearly 100% within only 2.5 min at pH 9, and kobs increased at higher initial sulfite dosages and greater UV intensities. HCO3- had a limited effect on the degradation of IPM, while humic acid (HA) was found to be a strong inhibitor in the UV/sulfite process. With the synergistic action of UV/sulfite, most of the iodine in IPM was found to release in the form of iodide ions (up to approximately 98%), and a few formed iodide-containing organic compounds, reducing significantly the toxicity of degradation products. Under direct UV irradiation and free radical reduction (mainly eaq-), 15 transformation intermediates of IPM were produced by amide hydrolysis, deiodination, hydroxyl radical addition and hydrogen abstraction reactions, in which free radical attack accounted for the main part. Consequently, the UV/sulfite process has a strong potential for IPM degradation in aquatic environments.


Subject(s)
Water Pollutants, Chemical , Water Purification , Free Radicals , Iodides , Iopamidol/chemistry , Oxidation-Reduction , Sulfites/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...