Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956164

ABSTRACT

Here we conducted wireless electrophysiological recording of hippocampal neurons from Egyptian fruit bats in the presence of human experimenters. In flying bats, many neurons modulated their activity depending on the identity of the human at the landing target. In stationary bats, many neurons carried significant spatial information about the position and identity of humans traversing the environment. Our results reveal that hippocampal activity is robustly modulated by the presence, movement and identity of human experimenters.

2.
Semin Dial ; 36(6): 486-488, 2023.
Article in English | MEDLINE | ID: mdl-36710078

ABSTRACT

A 54-year-old underwent brachiocephalic arteriovenous fistula placement. Following maturation of the access, consistent cannulation for routine hemodialysis was challenging for clinical specialists. A three-dimensional intraluminal access model was generated, but clinical specialists adept at cannulation had difficulty orienting the model to the patient's anatomy without repeat supervision. When provided the model prima facie, 50% (4/8) clinical specialists were not able to spatially orient the model appropriately in the x-axis with respect to the coronal plane (2/8) or in the z-axis with respect to the transverse plane (2/8). Spatial renderings of the subcutaneous volume available for cannulation were then printed and physically applied to the vascular access model resulting in appropriate spatial orientation among all clinical specialists (n = 12) that were presented the models for the first time. Mean Kt/V increased during the 3-month period directly following model introduction. This case demonstrates the potential utility of 3D-modeling to readily visualize the subcutaneous volume of a hemodialysis vascular access and reduce cannulation error.


Subject(s)
Arteriovenous Shunt, Surgical , Kidney Failure, Chronic , Humans , Middle Aged , Renal Dialysis/methods , Kidney Failure, Chronic/therapy , Treatment Outcome , Arteriovenous Shunt, Surgical/methods , Catheterization/methods , Printing, Three-Dimensional
3.
JACC Basic Transl Sci ; 7(3): 223-243, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35411325

ABSTRACT

Mitochondria are essential for cardiac myocyte function, but damaged mitochondria trigger cardiac myocyte death. Although mitophagy, a lysosomal degradative pathway to remove damaged mitochondria, is robustly active in cardiac myocytes in the unstressed heart, its mechanisms and physiological role remain poorly defined. We discovered a critical role for TRAF2, an innate immunity effector protein with E3 ubiquitin ligase activity, in facilitating physiological cardiac myocyte mitophagy in the adult heart, to prevent inflammation and cell death, and maintain myocardial homeostasis.

4.
J Am Soc Nephrol ; 33(3): 565-582, 2022 03.
Article in English | MEDLINE | ID: mdl-35091451

ABSTRACT

BACKGROUND: Endothelial cell injury is a common nidus of renal injury in patients and consistent with the high prevalence of AKI reported during the coronavirus disease 2019 pandemic. This cell type expresses integrin α5 (ITGA5), which is essential to the Tie2 signaling pathway. The microRNA miR-218-5p is upregulated in endothelial progenitor cells (EPCs) after hypoxia, but microRNA regulation of Tie2 in the EPC lineage is unclear. METHODS: We isolated human kidney-derived EPCs (hkEPCs) and surveyed microRNA target transcripts. A preclinical model of ischemic kidney injury was used to evaluate the effect of hkEPCs on capillary repair. We used a genetic knockout model to evaluate the effect of deleting endogenous expression of miR-218 specifically in angioblasts. RESULTS: After ischemic in vitro preconditioning, miR-218-5p was elevated in hkEPCs. We found miR-218-5p bound to ITGA5 mRNA transcript and decreased ITGA5 protein expression. Phosphorylation of 42/44 MAPK decreased by 73.6% in hkEPCs treated with miR-218-5p. Cells supplemented with miR-218-5p downregulated ITGA5 synthesis and decreased 42/44 MAPK phosphorylation. In a CD309-Cre/miR-218-2-LoxP mammalian model (a conditional knockout mouse model designed to delete pre-miR-218-2 exclusively in CD309+ cells), homozygotes at e18.5 contained avascular glomeruli, whereas heterozygote adults showed susceptibility to kidney injury. Isolated EPCs from the mouse kidney contained high amounts of ITGA5 and showed decreased migratory capacity in three-dimensional cell culture. CONCLUSIONS: These results demonstrate the critical regulatory role of miR-218-5p in kidney EPC migration, a finding that may inform efforts to treat microvascular kidney injury via therapeutic cell delivery.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Integrin alpha5/metabolism , MicroRNAs/physiology , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, TIE-2/physiology , Signal Transduction/physiology
5.
Nano Lett ; 21(12): 4944-4949, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34102057

ABSTRACT

The measurement of electrical activity across systems of excitable cells underlies current progress in neuroscience, cardiac pharmacology, and neurotechnology. However, bioelectricity spans orders of magnitude in intensity, space, and time, posing substantial technological challenges. The development of methods permitting network-scale recordings with high spatial resolution remains key to studies of electrogenic cells, emergent networks, and bioelectric computation. Here, we demonstrate single-shot and label-free imaging of extracellular potentials with high resolution across a wide field-of-view. The critically coupled waveguide-amplified graphene electric field (CAGE) sensor leverages the field-sensitive optical transitions in graphene to convert electric potentials into the optical regime. As a proof-of-concept, we use the CAGE sensor to detect native electrical activity from cardiac action potentials with tens-of-microns resolution, simultaneously map the propagation of these potentials at tissue-scale, and monitor their modification by pharmacological agents. This platform is robust, scalable, and compatible with existing microscopy techniques for multimodal correlative imaging.


Subject(s)
Graphite , Action Potentials , Electrophysiological Phenomena , Heart , Microscopy
6.
J Clin Endocrinol Metab ; 103(6): 2284-2290, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29590381

ABSTRACT

Context: Disturbed circadian rhythms and sleep quality during pregnancy have been related to gestational weight gain and gestational diabetes mellitus (GDM), which affect postpartum glucose metabolism and future risk of type 2 diabetes. Objective: We assessed whether the circadian rhythm-related melatonin receptor 1B (MTNR1B) genotype was associated with 1 to 5 years of postpartum glycemic changes among women with a history of GDM and whether gestational weight gain modified such associations. Design, Settings, and Participants: The established circadian rhythm-associated MTNR1B genetic variant (rs10830963) was genotyped in 1025 Chinese women with a history of GDM. Body weight and glycemic traits, during and after pregnancy, were longitudinally collected. Main Outcome Measures: The main outcome measure was postpartum glycemic changes. Results: We found that women carrying different MTNR1B genotypes showed distinct postpartum changes in 2-hour oral glucose tolerance test: 0.36, 0.20, and -0.19 mM per additional copy of the shorter sleep duration-related G allele in women with inadequate, adequate, and excessive gestational weight gain, respectively (for interaction, P = 0.028). The corresponding changes in fasting glucose were 0.14, 0.13, and 0.01 mM, although the modification effect of gestational weight gain on the genetic association was marginally significant (for interaction, P = 0.067). Conclusions: Our findings suggest that gestational weight gain may modify the circadian rhythm-related MTNR1B genetic variant on long-term glycemic changes, highlighting the significance of gestational weight management in diabetes prevention among women with GDM.


Subject(s)
Blood Glucose/genetics , Diabetes, Gestational/genetics , Genotype , Gestational Weight Gain/genetics , Receptor, Melatonin, MT2/genetics , Adult , Alleles , Female , Glucose Tolerance Test , Humans , Polymorphism, Single Nucleotide , Postpartum Period , Pregnancy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...