Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 250: 126246, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32097811

ABSTRACT

A piscicide, rotenone (RT), is frequently used for clear and management of aquatic systems such as fish pond, and even for illegal fishing throughout the world. The effects of RT on submerged macrophytes remain elusive although the effects of RT on many kinds of animals are well documented. We wanted to determine the effects of RT on the growth and metabolism of three submerged plants (Vallisneria natans, Myriophyllum spicatum, Potamogeton maackianus) and try to find the reasons of these effects. The results showed that the shoot height, shoot dry weight, root dry weight, root:shoot ratios, contents of soluble protein and soluble carbohydrate of the three tested submerged plants were significantly negatively affected by RT and the effects were different among the studied species. Furthermore, pH rised a little and light transmission was greatly reduced in the water with RT treatment. We think that the negative effects of RT on the growth and metabolism of submerged species is partially attributing to the lower light caused by RT application. Accordingly, we highlight that submerged species may be greatly suppressed by RT, and we should apply RT in water ecosystems with great caution.


Subject(s)
Hydrocharitaceae/drug effects , Pesticides/toxicity , Potamogetonaceae/drug effects , Rotenone/toxicity , Ecosystem , Hydrocharitaceae/growth & development , Hydrocharitaceae/metabolism , Potamogetonaceae/growth & development , Water/metabolism
2.
Sci Rep ; 9(1): 511, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679591

ABSTRACT

In weed management, using native parasites to control exotic weeds is considered a better alternative than classical biological control. But the risk must be assessed because of the potential damage caused by these agents. We conducted this project to investigate the mechanism driving the choice of a native obligate parasite, Cuscuta australis, between the exotic, Humulus scandens, and native plants as its host through field and pot experiments. The results showed that C. australis preferred the exotic weed over native (naturalized) hosts and caused a notable reduction in the biomass of H. scandens in the field. In contrast, the results of the pot experimentindicated that C. australis preferred a mix of native (naturalized) hosts over the exotic weed. Both texperiments indicated that the parasitic preference of C. australis was induced more by light irradiance than plant water, carbon (C), nitrogen (N) and phosphorus (P) contents, indicating that the native parasite can only be used to control H. scandens when the exotic weed forms mono-cultures or dominates the community. Accordingly, induction and release of C. australis to control H. scandens should be conducted with great caution.


Subject(s)
Cuscuta/physiology , Humulus/parasitology , Plant Weeds/physiology , Biomass , Carbon/metabolism , Host-Parasite Interactions , Nitrogen/metabolism , Phosphorus/metabolism , Water/metabolism , Weed Control
SELECTION OF CITATIONS
SEARCH DETAIL
...