Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 992130, 2022.
Article in English | MEDLINE | ID: mdl-36507338

ABSTRACT

Mood disorders, such as anxiety and depression, are commonly found in people suffering from chronic pain. Serotonin-norepinephrine reuptake inhibitors (SNRIs) are potential in alleviating chronic pain and are the first-line option for anxiety disorder. The anterior cingulate cortex (ACC) plays a vital role in chronic pain-induced anxiety, but its role in the therapeutic effects of SNRIs remains largely unclear. We used complete Freund's adjuvant (CFA) in this current study to induce chronic inflammatory pain. Von Frey test was used to measure the mechanical withdrawal threshold. The elevated plus maze test (EPM) and the novelty-suppressed feeding test (NSF) were used to measure anxiety-like behaviors. Twenty-one days after the modeling, anxiety-like behaviors were successfully induced in CFA mice, and a 3-day intraperitoneal injection of duloxetine attenuated such behaviors. While, mechanical hyperalgesia was also improved. Then, we locally infused duloxetine in ACC for 3 days only to find out its analgesic effect in CFA mice. Furthermore, we used fiber photometry to discover decreased glutamatergic excitability and enhanced serotonin concentration in ACC after intraperitoneal injection of duloxetine. Overall, this study proposed a potential mechanism for the analgesic effect of duloxetine and shed light on further studies on the mechanism of its anxiolytic effect in chronic pain-induced anxiety.

2.
Neuropharmacology ; 220: 109259, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36126726

ABSTRACT

Somatic symptom disorder (SSD), which occurs in about 5-7 percent of the adult population, involves heightened physical and emotional sensitivity to pain. However, its neural mechanism remains elusive and thus hinders effective clinical intervention. In this study, we employed chronic restraint stress (CRS)-induced hyperalgesia as a mouse model to investigate the neural mechanism underlying SSD and its pharmacological treatment. We found that CRS induced hyperactivity of anterior cingulate cortex (ACC), whereas chemogenetic inhibition of such hyperactivity could prevent CRS-induced hyperalgesia. Systematic application and ACC local infusion of fluoxetine alleviated CRS-induced hyperalgesia. Moreover, we found that fluoxetine exerted its anti-hyperalgesic effects through inhibiting the hyperactivity of ACC and upregulating 5-HT1A receptors. Our study thus uncovers the functional role of 5-HT signaling in modulating pain sensation and provides a neural basis for developing precise clinical intervention for SSD.


Subject(s)
Fluoxetine , Hyperalgesia , Animals , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Gyrus Cinguli , Hyperalgesia/drug therapy , Mice , Pain/drug therapy , Serotonin
SELECTION OF CITATIONS
SEARCH DETAIL
...