Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38498545

ABSTRACT

Pepper (Capsicum annuum L.) is a herbaceous plant species in the family Solanaceae. Capsicum anthracnose is caused by the genus Colletotrichum. spp., which decreases pepper production by about 50% each year due to anthracnose. In this study, we evaluated the resistance of red ripe fruits from 17 pepper varieties against anthracnose fungus Colletotrichum capsici. We assessed the size of the lesion diameter and conducted significance analysis to identify the resistant variety of B158 and susceptible variety of B161. We selected a resistant cultivar B158 and a susceptible cultivar B161 of pepper and used a transcription to investigate the molecular mechanisms underlying the plant's resistance to C. capsici, of which little is known. The inoculated fruit from these two varieties were used for the comparative transcription analysis, which revealed the anthracnose-induced differential transcription in the resistant and susceptible pepper samples. In the environment of an anthrax infection, we found that there were more differentially expressed genes in resistant varieties compared to susceptible varieties. Moreover, the response to stimulus and stress ability was stronger in the KANG. The transcription analysis revealed the activation of plant hormone signaling pathways, phenylpropanoid synthesis, and metabolic processes in the defense response of peppers against anthracnose. In addition, ARR-B, AP2-EREBP, bHLH, WRKY, and NAC are associated with disease resistance to anthracnose. Notably, WRKY and NAC were found to have a potentially positive regulatory role in the defense response against anthracnose. These findings contribute to a more comprehensive understanding of the resistance mechanisms of red pepper fruit to anthracnose infection, providing valuable molecular insights for further research on the resistance mechanisms and genetic regulations during this developmental stage of pepper.

2.
J Exp Bot ; 72(7): 2463-2476, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33340036

ABSTRACT

Seeds are major vehicles of propagation and dispersal in plants. A number of transcription factors, including APETALA2 (AP2), play crucial roles during the seed development process in various plant species. However, genes essential for seed development and the regulatory networks that operate during seed development remain unclear in lettuce. Here, we identified a lettuce AP2 (LsAP2) gene that was highly expressed during the early stages of seed development. LsAP2 knockout plants obtained by the CRISPR/Cas9 system were used to explore the biological function of LsAP2. Compared with the wild type, the seeds of Lsap2 mutant plants were longer and narrower, and developed an extended tip at the seed top. After further investigating the structural characteristics of the seeds of Lsap2 mutant plants, we proposed a new function of LsAP2 in seed dispersal. Moreover, we identified several interactors of LsAP2. Our results showed that LsAP2 directly interacted with the lettuce homolog of BREVIPEDICELLUS (LsBP) and promoted the expression of LsBP. Transcriptome analysis revealed that LsAP2 might also be involved in brassinosteroid biosynthesis and signaling pathways. Taken together, our data indicate that LsAP2 has a significant function in regulating seed shape in lettuce.


Subject(s)
Lactuca/genetics , Plant Proteins , Seeds/growth & development , Transcription Factors , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factor AP-2 , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Genes (Basel) ; 11(1)2020 01 09.
Article in English | MEDLINE | ID: mdl-31936663

ABSTRACT

Radish (Raphanus sativus L.) is an important root vegetable worldwide. The development of F1 hybrids, which are extensively used for commercial radish production, relies on cytoplasmic male sterility (CMS). To identify candidate genes responsible for CMS in NWB cytoplasm, we sequenced the normal and NWB CMS radish mitochondrial genomes via next-generation sequencing. A comparative analysis revealed 18 syntenic blocks and 11 unique regions in the NWB CMS mitogenome. A detailed examination indicated that orf463a was the most likely causal factor for male sterility in NWB cytoplasm. Interestingly, orf463a was identical to orf463, which is responsible for CMS in Dongbu cytoplasmic and genic male sterility (DCGMS) radish. Moreover, only structural variations were detected between the NWB CMS and DCGMS mitochondrial genomes, with no nucleotide polymorphisms (SNPs) or meaningful indels. Further analyses revealed these two mitochondrial genomes are coexisting isomeric forms belonging to the same mitotype. orf463a was more highly expressed in flower buds than in vegetative organs and its expression was differentially regulated in the presence of restorer of fertility (Rf) genes. orf463a was confirmed to originate from Raphanus raphanistrum. In this study, we identified a candidate gene responsible for the CMS in NWB cytoplasm and clarified the relationship between NWB CMS and DCGMS.


Subject(s)
DNA, Mitochondrial/genetics , Plant Infertility/genetics , Raphanus/genetics , Base Sequence , Brassicaceae/genetics , Chromosome Mapping , Cytoplasm , DNA, Mitochondrial/metabolism , Genome, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing , Mitochondria/genetics
4.
Am J Bot ; 102(2): 239-47, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25667077

ABSTRACT

PREMISE OF THE STUDY: Comparative phylogeography of intercontinental disjunct taxa allowed us not only to elucidate their diversification and evolution following geographic isolation, but also to understand the effect of climatic and geological histories on the evolutionary processes of closely related species. A phylogeographic analysis was conducted on the eastern Asian-North American disjunct genus Zizania to compare intracontinental phylogeographic patterns between different continents. METHODS: Surveys were conducted of 514 individuals using three chloroplast DNA fragments and three nuclear microsatellite loci. These individuals included 246 from 45 populations of Zizania latifolia in eastern Asia, and the following from North America: 154 individuals from 26 populations of Z. aquatica, 84 individuals from 14 populations of Z. palustris, and 30 individuals from one population of Z. texana. KEY RESULTS: The genetic diversity of North American Zizania was significantly higher than that of eastern Asian Zizania. High levels of genetic differentiation among populations and no signal of population expansion were detected in three widespread species. No phylogeographic structure was observed in Z. latifolia, and discordant patterns of cpDNA and microsatellite markers were observed in North American Zizania. CONCLUSIONS: Reduced variation in Zizania latifolia likely reflects its perennial life history, the North American origin of Zizania, and the relative homogeneity of aquatic environments. High levels of genetic differentiation suggest limited dispersal among populations in all Zizania species. The more complex patterns of diversification and evolution in North American Zizania may be driven by the greater impact of glaciation in North America relative to eastern Asia.


Subject(s)
DNA, Plant/analysis , Evolution, Molecular , Genetic Variation , Oryza/genetics , Phylogeny , Phylogeography , Poaceae/genetics , DNA, Chloroplast/analysis , Asia, Eastern , Geography , Microsatellite Repeats , North America , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...