Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
J Pineal Res ; 73(2): e12810, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35620796

ABSTRACT

Melatonin (MT) functions in removing reactive oxygen species (ROS) and delaying plant senescence, thereby acting as an antioxidant; however, the molecular mechanism underlying the specific action of MT is unclear. Herein, we used the mutant plants carrying the MT decomposition gene melatonin 3-hydroxylase (M3H) in tomato to elucidate the specific mechanism of action of MT. SlM3H-OE accelerated senescence by decreasing the content of endogenous MT in plants. SlM3H is a senescence-related gene that positively regulates aging. MT inhibited the expression of the senescence-related gene SlCV to scavenge ROS, induced stable chloroplast structure, and delayed leaf senescence. Simultaneously, MT weakened the interaction between SlCV and SlPsbO/SlCAT3, reduced ROS production in photosystem II, and promoted ROS elimination. In conclusion, MT regulates ROS homeostasis and delays leaf aging in tomato plants through SlCV expression modulation.


Subject(s)
Melatonin , Solanum lycopersicum , Gene Expression Regulation, Plant , Homeostasis , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Melatonin/pharmacology , Plant Leaves/genetics , Plant Senescence , Reactive Oxygen Species/metabolism
2.
Ying Yong Sheng Tai Xue Bao ; 29(6): 1983-1989, 2018 Jun.
Article in Chinese | MEDLINE | ID: mdl-29974709

ABSTRACT

We analyzed the growth, leaf chlorophyll content, and photosynthetic parameters of a tomato leaf yellowing mutant (Y55) induced by ethyl methane sulfonate (EMS) from the cultivar "Heinz 1706" (WT). Results showed that the plant height, stem diameter, and fresh mass of Y55 significantly . The contents of chlorophyll a, chlorophyll b, carotenoid, total chlorophyll and the chlorophyll a/b ratio of the mutant were significantly lower than those of WT. The contents of all precursor materials of chlorophyll synthesis, especially porphyrinogen III and those involved in the chlorophyll biosynthesis pathway, were significantly lower in Y55 than those in WT. Moreover, the net photosynthesis (Pn), transpiration rate (Tr), intercellular CO2 concentration (Ci), and conductance to H2O (gs) significantly in Y55. The maximum photosynthetic rate, CO2 saturation and compensation point, and light saturation and compensation point. The Fv/Fm significantly, whereas the Fo significantly in Y55. The photosynthetic electron production and electron transport rates of PSII and PSI also significantly decreased. The total photosynthetic pigment molecules (No) and the minimum average lifetime of photosynthetic pigment molecules in the excited state (τmin) significantly in Y55. All these results suggest that blocking the synthesis of porphyrinogen III ould decrease the chlorophyll content in the mutant Y55. Furthermore, the reduced amount of leaf pigment could affect photosynthesis in leaves and slow down the growth of mutant plants.


Subject(s)
Chlorophyll/analysis , Mutation , Photosynthesis , Solanum lycopersicum/genetics , Chlorophyll A , Ethyl Methanesulfonate , Solanum lycopersicum/physiology , Plant Leaves
3.
J Zhejiang Univ Sci B ; 18(7): 635-648, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28681588

ABSTRACT

OBJECTIVE: To evaluate the possible photoprotection mechanisms of cyclic and linear electron flux (CEF and LEF) under specific high temperature and high light (HH) stress. METHODS: Six-leaf-stage tomato seedlings ("Liaoyuanduoli", n=160) were divided into four parts: Part 1, served as control under 25 °C, 500 µmol/(m2·s); Part 2, spayed with distilled water (H2O) under 35 °C, 1000 µmol/(m2·s) (HH); Part 3, spayed with 100 µmol/L diuron (DCMU, CEF inhibitor) under HH; Part 4, spayed with 60 µmol/L methyl viologen (MV, LEF inhibitor) under HH. Energy conversion, photosystem I (PSI), and PSII activity, and trans-thylakoid membrane proton motive force were monitored during the treatment of 5 d and of the recovering 10 d. RESULTS: HH decreased photochemical reaction dissipation (P) and the maximal photochemical efficiency of PSII (Fv/Fm), and increased the excitation energy distribution coefficient of PSII (ß); DCMU and MV aggravated the partition imbalance of the excitation energy (γ) and the photoinhibition degree. With prolonged DCMU treatment time, electron transport rate and quantum efficiency of PSI (ETRI and YI) significantly decreased whereas acceptor and donor side limitation of PSI (YNA and YND) increased. MV led to a significant decline and accession of yield of regulated and non-regulated energy YNPQ and YNO, respectively. Membrane integrity and ATPase activity were reduced by HH stress, and DCMU and MV enhanced inhibitory actions. CONCLUSIONS: The protective effects of CEF and LEF were mediated to a certain degree by meliorations in energy absorption and distribution as well as by maintenance of thylakoid membrane integrity and ATPase activity.


Subject(s)
Hot Temperature , Light , Photosynthesis , Solanum lycopersicum/physiology , Adenosine Triphosphatases/metabolism , Chlorophyll/metabolism , Electron Transport , Electrons , Fluorescence , Hydrogen-Ion Concentration , Solanum lycopersicum/radiation effects , Photosystem I Protein Complex/metabolism , Plant Leaves/physiology , Plant Leaves/radiation effects , Seedlings/physiology , Seedlings/radiation effects , Thylakoids/metabolism , Time Factors
4.
J Proteomics ; 121: 67-87, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25829262

ABSTRACT

The control of abscission is an important agricultural concern because of its substantial effect on crop yield and quality. Changes in gene expression are correlated with the ethylene-mediated execution of abscission. However, only few large-scale proteomic studies focused on tomato pedicel abscission. Isobaric tag for relative and absolute quantification labeling was used to examine the protein and phosphoprotein changes in the tomato pedicel AZ (AZ) treated with ethylene or 1-methylcyclopropene. Among the 1429 quantified proteins, 383 unique peptides corresponding to 166 proteins showed higher than 1.5-fold change in abundance. A total of 450 phosphopeptides were detected, among which 85 phosphopeptides corresponding to 73 phosphoproteins were significantly regulated (>1.5-fold abundance change) in response to ethylene. Protein and phosphoprotein sets showed 26 similar proteins. Six phosphorylation motifs were extracted from the 138 phosphorylation sites. By analyzing translational and modification levels, we found that the modification level was not due to the translational changes. Comparison between the protein and phosphoprotein functions revealed that the proteins acted mainly in the metabolic process and showed catalytic activity, whereas most of the phosphoproteins showed signaling and transporting activities. Data revealed the unique features of the AZ phosphoproteomics, thereby suggesting the involvement of a complex network of kinase-substrate and phosphatase-substrate interactions in response to ethylene. Some phosphorylation sites from calcium-dependent protein kinase (CDPK5(S523)), CDPK5(S527), and SRL3(S329) were also found to perform protective functions for AZ and to be helpful in ethylene signal transduction. BIOLOGICAL SIGNIFICANCE: Organ abscission has both positive and negative roles. Abscission is conducive for the fall of ripe fruits and the release and dispersion of seeds, but abscission has been a major limiting factor for crop productivity. Hence, more details about the process may aid in the regulation of organ abscission. However, at present, the detailed mechanism of abscission is still unclear. In tomato, several transcriptome analyses were performed using pedicels as materials. Yet, no large-scale proteomics and phosphoproteomic studies of abscission zone have been reported so far. Hence, in this present study, we determined the ethylene-induced changes in the proteomics and phosphoproteomics of tomato flower AZ tissue using the isobaric tag for relative and absolute quantification (iTRAQ). Proteomics data from both data sets revealed the differentially expressed proteins that are associated with the translational and modification levels relevant to abscission mechanism. Two key proteins (CDPK (CDPK5(S523) and CDPK5(S527)) and SRL3(S329)) among ethylene signal transduction and defense-related proteins were obtained from the phosphoproteins. The set of tomato phosphorylation sites presented in this work is useful in at least two ways. First, as a database resource, the data would facilitate research on the identified phosphoproteins. Second, the identified sites of the related proteins could provide enough knowledge for further experiments. Hence, our results contribute to the understanding of the mechanism of abscission in plants.


Subject(s)
Ethylenes/chemistry , Plant Proteins/metabolism , Proteome/metabolism , Solanum lycopersicum/drug effects , Amino Acid Motifs , Catalysis , Cyclopropanes/chemistry , Flowers/drug effects , Flowers/metabolism , Gene Expression Regulation, Plant/drug effects , Solanum lycopersicum/metabolism , Phosphopeptides/chemistry , Phosphorylation , Protein Folding , Proteomics , RNA, Messenger/metabolism , Signal Transduction
5.
ScientificWorldJournal ; 2014: 389896, 2014.
Article in English | MEDLINE | ID: mdl-24790564

ABSTRACT

Polygalacturonase (PG) is crucial in plant organ abscission process. This paper investigated the cellular and subcellular localization of PG in ethylene-stimulated abscission of tomato pedicel explants. Confocal laser scanning microscopy of abscission zone sections with the fluorescent probe Cy3 revealed that PG was initially accumulated in parenchyma cells in cortical and vascular tissues after 8 h of ethylene treatment and then extended throughout the abscission zone when the abscission zone separated at 24 h after ethylene treatment. At the subcellular level, transmission electron microscopy with immunogold staining showed that PG showed abundant accumulation in the cortical and vascular tissues at 8 h after ethylene treatment, and the distribution area extended to the central parenchyma cells at 16 h after ethylene treatment. In addition, PGs were observed in the distal and proximal parts of the tomato pedicel explants throughout the abscission process. The results provided a visualized distribution of PG in the pedicel abscission zone and proved that PG was closely related to abscission.


Subject(s)
Polygalacturonase/metabolism , Solanum lycopersicum/metabolism , Solanum lycopersicum/ultrastructure , Enzyme Activation/drug effects , Ethylenes/pharmacology , Intracellular Space , Solanum lycopersicum/drug effects , Plant Growth Regulators/pharmacology , Protein Transport
6.
Ying Yong Sheng Tai Xue Bao ; 25(12): 3540-6, 2014 Dec.
Article in Chinese | MEDLINE | ID: mdl-25876406

ABSTRACT

The regulation of different calcium forms, namely CaCl2, Nano-calcium and Manntiol-calcuim, on the gas exchange and fluorescence of tomato leaves under heat stress was investigated. The results showed that all forms of calcium alleviated the decrease of chlorophyll a and carotenoid contents in leaves of tomato seedlings under heat stress, enhanced the net photosynthesis rate (Pn), transpiration rate (Tr) and stomatal conductance (g(s)) to varying degrees, reduced the quantum yield of non-regulated energy dissipation [Y(NO)] of PSII and quantum yield of non-photochemical energy dissipation in PSI due to acceptor side limitation [Y(NA)], promoted the regulated energy dissipation [Y(NPQ)] and quantum yield of non-photochemical energy dissipation in PSI due to donor side limitation [Y(ND)], and increased the calcium content in leaves. Generally, manntiol-calcium and nano-calcium were more effective than CaCl2, and more suitable to enhance the photosynthesis of leaves oftomato seedlings under heat stress.


Subject(s)
Calcium/chemistry , Hot Temperature , Photosynthesis , Solanum lycopersicum/physiology , Carotenoids/chemistry , Chlorophyll/chemistry , Chlorophyll A , Fluorescence , Plant Leaves/physiology , Plant Transpiration , Seedlings/physiology , Stress, Physiological
7.
J Biotechnol ; 168(4): 527-33, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24070903

ABSTRACT

FIP-fve is a bioactive protein isolated from the mushroom Flammulina velutipes, which belongs to the fungal immunomodulatory protein (FIP) family and demonstrates several kinds of biological activities including anti-allergy, anti-tumor and immunomodulation. In the current study, the FIP-fve gene was cloned and expressed in the yeast Pichia pastoris GS115, and its correctness was confirmed by SDS-PAGE and Western blot. Optimal expression of rFIP-fve was observed when the P. pastoris cells were cultured in 1% methanol for 9 6h, which resulted in a yield of 258.2 mg l(-1). The rFIP-fve protein was subsequently purified via ammonium sulfate precipitation and Sephadex G-100 gel chromatography. In vitro bioactivity examination showed that rFIP-fve could agglutinate human red blood cells and stimulate the cell viability of murine splenocytes. The immunomodulatory capacity and anti-tumor activity of rFIP-fve were demonstrated by enhanced interleukin-2 secretion and interferon-γ release from the murine lymphocytes, similar to the biological FIP-fve. In conclusion, the FIP-fve gene was functionally and effectively expressed in P. pastoris, and rFIP-fve displayed biological activities similar to those of native FIP-fve. These results indicated the potential use of rFIP-fve from P. pastoris as an effective and feasible source for therapeutic studies and medical applications.


Subject(s)
Flammulina/genetics , Fungal Proteins/biosynthesis , Pichia/genetics , Recombinant Proteins/biosynthesis , Animals , Erythrocytes/drug effects , Flammulina/growth & development , Fungal Proteins/genetics , Fungal Proteins/pharmacology , Gene Expression Regulation/drug effects , Humans , Interferon-gamma/metabolism , Interleukin-2/metabolism , Lymphocytes/drug effects , Lymphocytes/metabolism , Mice , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology
8.
Int J Biol Sci ; 7(8): 1161-70, 2011.
Article in English | MEDLINE | ID: mdl-22043173

ABSTRACT

The most important quality for muskmelon (Cucumis melo L.) is their sweetness which is closely related to the soluble sugars content. Leaves are the main photosynthetic organs in plants and thus the source of sugar accumulation in fruits since sugars are translocated from leaves to fruits. The effects of grafting muskmelon on two different inter-specific (Cucurbita maxima×C. moschata) rootstocks was investigated with respect to photosynthesis and carbohydrate metabolism. Grafting Zhongmi1 muskmelon on RibenStrong (GR) or Shengzhen1 (GS) rootstocks increased chlorophyll a, chlorophyll b and chlorophyll a+b content and the leaf area in middle and late developmental stages of the plant compared to the ungrafted Zhongmi1 check (CK). Grafting enhanced the net photosynthesis rate, the stomatal conductance, concentration of intercellular CO(2) and transpiration rate. Grafting influenced carbohydrates contents by changing carbohydrate metabolic enzymes activities which was observed as an increase in acid invertase and neutral invertase activity in the functional leaves during the early and middle developmental stages compared to CK. Grafting improved sucrose phosphate synthase and stachyose synthase activities in middle and late developmental stages, thus translocation of sugars (such as sucrose, raffinose and stachyose) in GR and GS leaves were significantly enhanced. However, compared with CK, translocation of more sugars in grafted plants did not exert feedback inhibition on photosynthesis. Our results indicate that grafting muskmelon on inter-specific rootstocks enhances photosynthesis and translocation of sugars in muskmelon leaves.


Subject(s)
Agriculture/methods , Breeding/methods , Carbohydrate Metabolism/physiology , Cucumis melo/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Plant Roots/physiology , Chlorophyll/metabolism , Galactosyltransferases/metabolism , Glucosyltransferases/metabolism , Species Specificity , beta-Fructofuranosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...