Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(6): 10419-10428, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571254

ABSTRACT

Twisted stacking of two-dimensional materials with broken inversion symmetry, such as spiral MoTe2 nanopyramids and supertwisted spiral WS2, emerge extremely strong second- and third-harmonic generation. Unlike well-studied nonlinear optical effects in these newly synthesized layered materials, photoluminescence (PL) spectra and exciton information involving their optoelectronic applications remain unknown. Here, we report layer- and power-dependent PL spectra of the supertwisted spiral WS2. The anomalous layer-dependent PL evolutions that PL intensity almost linearly increases with the rise of layer thickness have been determined. Furthermore, from the power-dependent spectra, we find the power exponents of the supertwisted spiral WS2 are smaller than 1, while those of the conventional multilayer WS2 are bigger than 1. These two abnormal phenomena indicate the enlarged interlayer spacing and the decoupling interlayer interaction in the supertwisted spiral WS2. These observations provide insight into PL features in the supertwisted spiral materials and may pave the way for further optoelectronic devices based on the twisted stacking materials.

2.
ACS Appl Mater Interfaces ; 15(46): 53688-53696, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37956364

ABSTRACT

The tunable optical display is vital for many application fields in telecommunications, sensors, and military devices. However, most optical materials have a strong wavelength dependence, which limits their spectral operation range. In this work, we develop an electrically reconfigurable optical medium based on graphene, demonstrating a cycle-controlled display covering the electromagnetic spectrum from the visible to the infrared wavelength. Through an electro-intercalation method, the graphene-based surface enables rich colors from gray to dark blue to dark red to yellow, and the response time is about 1 min from the start gray color to the final yellow color. Simultaneously, it exhibits a remarkable change in infrared emissivity (from 0.63 to 0.80 reduction to 0.20) with a response time of 1 s. This modification of optical properties of lithiated multilayer graphene (MLG) is the increase of Fermi energy (Ef) due to the charge transfer from lithium (Li) to graphene layers, which causes changes in interband and intraband electronic transitions. Our findings imply potential value in fabricating multispectral optical materials with high tunability.

SELECTION OF CITATIONS
SEARCH DETAIL
...