Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 184(12): 3267-3280.e18, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34043941

ABSTRACT

Searching for factors to improve knockin efficiency for therapeutic applications, biotechnology, and generation of non-human primate models of disease, we found that the strand exchange protein RAD51 can significantly increase Cas9-mediated homozygous knockin in mouse embryos through an interhomolog repair (IHR) mechanism. IHR is a hallmark of meiosis but only occurs at low frequencies in somatic cells, and its occurrence in zygotes is controversial. Using multiple approaches, we provide evidence for an endogenous IHR mechanism in the early embryo that can be enhanced by RAD51. This process can be harnessed to generate homozygotes from wild-type zygotes using exogenous donors and to convert heterozygous alleles into homozygous alleles without exogenous templates. Furthermore, we identify additional IHR-promoting factors and describe features of IHR events. Together, our findings show conclusive evidence for IHR in mouse embryos and describe an efficient method for enhanced gene conversion.


Subject(s)
DNA Repair/genetics , Gene Conversion , Rad51 Recombinase/metabolism , Alleles , Animals , Base Sequence , CRISPR-Associated Protein 9/metabolism , Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosomes, Mammalian/genetics , DNA Breaks, Double-Stranded , Embryo, Mammalian , Female , Genetic Loci , Homologous Recombination/genetics , Homozygote , Humans , INDEL Mutation/genetics , Mice, Inbred C57BL , Mosaicism , Nuclear Proteins/metabolism , Polymorphism, Single Nucleotide/genetics , Ribonucleoproteins/metabolism , Zygote/metabolism
2.
J Am Assoc Lab Anim Sci ; 55(4): 400-5, 2016.
Article in English | MEDLINE | ID: mdl-27423145

ABSTRACT

The reliable generation of high-percentage chimeras from gene-targeted C57BL/6 embryonic stem cells has proven challenging, despite optimization of cell culture and microinjection techniques. To improve the efficiency of this procedure, we compared the generation of chimeras by using 3 different inbred, albino host, embryo-generating protocols: BALB/cAnNTac (BALB/c) donor mice superovulated at 4 wk of age, 12-wk-old BALB/c donor mice without superovulation, and C57BL/6NTac-Tyr(tm1Arte) (albino B6) mice superovulated at 4 wk of age. Key parameters measured included the average number of injectable embryos per donor, the percentage of live pups born from the total number of embryos transferred to recipients, and the number of chimeric pups with high embryonic-stem-cell contribution by coat color. Although albino B6 donors produced significantly more injectable embryos than did BALB/c donors, 12-wk-old BALB/c donor produced high-percentage (at least 70%) chimeras more than 2.5 times as often as did albino B6 mice and 20 times more efficiently than did 4-wk-old BALB/c donors. These findings clearly suggest that 12-wk-old BALB/c mice be used as blastocyst donors to reduce the number of mice used to generate each chimera, reduce the production of low-percentage chimeras, and maximize the generation of high-percentage chimeras from C57BL/6 embryonic stem cells.


Subject(s)
Chimera/physiology , Embryo Transfer/methods , Embryonic Stem Cells/transplantation , Mice, Inbred BALB C/physiology , Mice, Inbred C57BL/physiology , Superovulation/physiology , Animals , Blastocyst/cytology , Female , Male , Mice , Microinjections
3.
PLoS One ; 9(3): e91892, 2014.
Article in English | MEDLINE | ID: mdl-24618785

ABSTRACT

The utility of cryopreserved mouse gametes for reproduction of transgenic mice depends on development of assisted reproductive technologies, including vitrification of unfertilized mouse oocytes. Due to hardening of the zona pellucida, spermatozoa are often unable to penetrate vitrified-warmed (V-W) oocytes. Laser-assisted in vitro fertilization (LAIVF) facilitates fertilization by allowing easier penetration of spermatozoa through a perforation in the zona. We investigated the efficiency of V-W C57BL/6NTac oocytes drilled by the XYClone laser, compared to fresh oocytes. By using DAP213 for cryoprotection, 83% (1,470/1,762) of vitrified oocytes were recovered after warming and 78% were viable. Four groups were evaluated for two-cell embryo and live offspring efficiency: 1) LAIVF using V-W oocytes, 2) LAIVF using fresh oocytes, 3) conventional IVF using V-W oocytes and 4) conventional IVF using fresh oocytes. First, the groups were tested using fresh C57BL/6NTac spermatozoa (74% motile, 15 million/ml). LAIVF markedly improved the two-cell embryo efficiency using both V-W (76%, 229/298) and fresh oocytes (69%, 135/197), compared to conventional IVF (7%, 12/182; 6%, 14/235, respectively). Then, frozen-thawed C57BL/6NTac spermatozoa (35% motile, 15 million/ml) were used and LAIVF was again found to enhance fertilization efficiency, with two-cell embryo rates of 87% (298/343) using V-W oocytes (P<0.05, compared to fresh spermatozoa), and 73% (195/266) using fresh oocytes. Conventional IVF with frozen-thawed spermatozoa using V-W (6%, 10/168) and fresh (5%, 15/323) oocytes produced few two-cell embryos. Although live offspring efficiency following embryo transfer was greater with conventional IVF (35%, 18/51; LAIVF: 6%, 50/784), advantage was seen with LAIVF in live offspring obtained from total oocytes (5%, 50/1,010; conventional IVF: 2%, 18/908). Our results demonstrated that zona-drilled V-W mouse oocytes can be used for IVF procedures using both fresh and frozen-thawed spermatozoa, producing live pups. The ability to cryopreserve mouse gametes for LAIVF may facilitate management of large-scale transgenic mouse production facilities.


Subject(s)
Fertilization in Vitro , Fertilization , Oocytes/cytology , Spermatozoa/cytology , Animals , Cell Movement , Cell Survival , Cryopreservation , Embryo, Mammalian , Female , Lasers , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Pregnancy Rate
4.
PLoS One ; 9(1): e84877, 2014.
Article in English | MEDLINE | ID: mdl-24392159

ABSTRACT

The decline of circulating testosterone levels in aging men is associated with adverse health effects. During studies of probiotic bacteria and obesity, we discovered that male mice routinely consuming purified lactic acid bacteria originally isolated from human milk had larger testicles and increased serum testosterone levels compared to their age-matched controls. Further investigation using microscopy-assisted histomorphometry of testicular tissue showed that mice consuming Lactobacillus reuteri in their drinking water had significantly increased seminiferous tubule cross-sectional profiles and increased spermatogenesis and Leydig cell numbers per testis when compared with matched diet counterparts This showed that criteria of gonadal aging were reduced after routinely consuming a purified microbe such as L. reuteri. We tested whether these features typical of sustained reproductive fitness may be due to anti-inflammatory properties of L. reuteri, and found that testicular mass and other indicators typical of old age were similarly restored to youthful levels using systemic administration of antibodies blocking pro-inflammatory cytokine interleukin-17A. This indicated that uncontrolled host inflammatory responses contributed to the testicular atrophy phenotype in aged mice. Reduced circulating testosterone levels have been implicated in many adverse effects; dietary L. reuteri or other probiotic supplementation may provide a viable natural approach to prevention of male hypogonadism, absent the controversy and side-effects of traditional therapies, and yield practical options for management of disorders typically associated with normal aging. These novel findings suggest a potential high impact for microbe therapy in public health by imparting hormonal and gonad features of reproductive fitness typical of much younger healthy individuals.


Subject(s)
Probiotics/administration & dosage , Testis/anatomy & histology , Testosterone/blood , Age Factors , Animals , Atrophy , Diet , Interleukin-17/metabolism , Limosilactobacillus reuteri/physiology , Leydig Cells/cytology , Male , Mice , Organ Size , Seminiferous Tubules/cytology , Spermatogenesis , Testis/pathology
5.
PLoS One ; 8(10): e78898, 2013.
Article in English | MEDLINE | ID: mdl-24205344

ABSTRACT

Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.


Subject(s)
Limosilactobacillus reuteri/physiology , Oxytocin/metabolism , Symbiosis , Wound Healing , Animals , CD4-Positive T-Lymphocytes/immunology , Collagen/metabolism , DNA-Binding Proteins/deficiency , Drinking Water/microbiology , Female , Mice , Oxytocin/blood , Time Factors , Up-Regulation
6.
Comp Med ; 58(2): 145-50, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18524172

ABSTRACT

Embryo electrofusion and tetraploid blastocyst microinjection is a modification of the traditional embryonic stem cell (ES cell)-based method to generate targeted mutant mice. Viability of tetraploid embryos is reportedly lower than with diploid embryos, with considerable interstrain variation. Here we assessed fetus and pup viability after ES cell microinjection of tetraploid blastocysts derived from outbred, hybrid, and inbred mice. Two-cell mouse embryos (C57BL/6NTac [B6], n = 788; B6D2F1/Tac [BDF1], n = 1871; Crl:CD1(ICR) [CD1], n = 1308) were electrofused; most resultant tetraploid blastocysts were injected with ES cells and surgically transferred into pseudopregnant recipient mice. Reproductive tracts were examined at midgestation for embryologic studies using B6 and BDF1 blastocysts; implantation sites and viable fetuses were counted. Pregnancies were carried to term for studies of targeted mutant mice using BDF1 and CD1 blastocysts, and pup yield was evaluated. Electrofusion rates of 2-cell embryos did not differ among B6, BDF1, and CD1 mice (overall mean, 92.8% +/- 5.4%). For embryologic studies, 244 B6 blastocysts were surgically transferred and 1 fetus was viable (0.41%), compared with 644 BDF1 blastocysts surgically transferred and 88 viable fetuses (13.7%). For targeted mutant mouse studies, 259 BDF1 blastocysts were surgically transferred yielding 10 pups (3.9%); 569 CD1 blastocysts yielded 44 pups (7.7%).


Subject(s)
Blastocyst/physiology , Cloning, Organism/methods , Embryonic Stem Cells/cytology , Fetal Development/physiology , Animals , Animals, Genetically Modified , Animals, Outbred Strains , Embryonic Stem Cells/physiology , Female , Fetal Viability , Longevity , Mice , Mice, Inbred C57BL , Microinjections , Polyploidy , Pregnancy , Stem Cells
7.
J Biol Chem ; 280(2): 1354-9, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15522875

ABSTRACT

The number of autosomal mammalian genes subject to random monoallelic expression has been limited to genes highly specific to the function of chemosensory neurons or lymphocytes, making this phenomenon difficult to address systematically. Here we demonstrate that asynchronous DNA replication can be used as a marker for the identification of novel genes with monoallelic expression and identify p120 catenin, a gene involved in cell adhesion, as belonging to this class. p120 is widely expressed; its presence in available cell lines allowed us to address quantitative aspects of monoallelic expression. We show that the epigenetic choice of active allele is clonally stable and that biallelic clones express p120 at twice the level of monoallelic clones. Unlike previous reports about genes of this type, we found that expression of p120 can be monoallelic in one cell type and strictly biallelic in another. We show that in human lymphoblasts, the silencing of one allele is incomplete. These unexpected properties are likely to be wide-spread, as we show that the Tlr4 gene shares them. Identification of monoallelic expression of a nearly ubiquitous gene indicates that this type of gene regulation is more common than previously thought. This has important implications for carcinogenesis and definition of cell identity.


Subject(s)
Alleles , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/genetics , Gene Expression Regulation , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , Animals , Catenins , Cell Line , Humans , Lymphocytes/metabolism , Mice , Delta Catenin
8.
Nat Genet ; 33(3): 339-41, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12577058

ABSTRACT

Random monoallelic expression and asynchronous replication define an unusual class of autosomal mammalian genes. We show that every cell has randomly chosen either the maternal or paternal copy of each given autosome pair, such that alleles of these genes scattered across the chosen chromosome replicate earlier than the alleles on the homologous chromosome. Thus, chromosome-pair non-equivalence, rather than being limited to X-chromosome inactivation, is a fundamental property of mouse chromosomes.


Subject(s)
DNA Replication/genetics , Alleles , Animals , Chromosomes/genetics , Dosage Compensation, Genetic , Female , Gene Expression , Genomic Imprinting , In Situ Hybridization, Fluorescence , Male , Mice , Receptors, Odorant/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...