Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Aging (Albany NY) ; 16(3): 2908-2933, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38329444

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer. With the in-depth exploration of cell death manners, numerous studies found that anoikis is an important mechanism that associated with treatment. Therefore, we aimed to explore the prognostic value and treatment guidance of anoikis in NSCLC patients. In the current study, we first constructed a prognostic model based on the anoikis-related genes based on bulk RNA-sequencing and single-cell RNA-sequencing (scRNA-seq) dataset. Then, immuno-correlations of anoikis-related risk scores (ARGRS) were analyzed. In addition, HMGA1, a risky gene in ARGRS, was further explored to define its expression and immuno-correlation. Results showed that patients with higher ARGRS had worse clinical outcomes. Moreover, the five genes in the prognostic model were all highly expressed on tumor cells. Moreover, further analysis found that the ARGRS was negatively correlated with ImmuneScore, but positively with tumor purity. Besides, patients in the ARGRS-high group had lower levels of immunological characteristics, such as the immune-related signaling pathways and subpopulations. Additionally, in the immunotherapy cohorts, patients with the ARGRS-high phenotype were more resistant to immunotherapy and tended to not achieve remission after treatment. Last, HMGA1 was chosen as the representative biomarker, and analysis of the in-house cohort showed that HMGA1 was highly expressed in tumor tissues and correlated with decreased T cell infiltration. To sum up, ARGRS was correlated with a desert tumor microenvironment and identified immune-cold tumors, which can be a novel biomarker for the recognition of immunological characteristics and an immunotherapeutic response in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , HMGA1a Protein , Lung Neoplasms/genetics , Anoikis/genetics , Prognosis , Biomarkers , RNA , Tumor Microenvironment/genetics
2.
Anal Methods ; 16(1): 51-61, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38058174

ABSTRACT

The detection of epidermal growth factor receptor (EGFR) mutation L858R in circulating tumor DNA (ctDNA) is beneficial for the clinical diagnosis and personalized therapy of non-small cell lung cancer (NSCLC). Herein, for the first time, the combination of the primer exchange reaction (PER) and clustered regularly interspaced short palindromic repeats (CRISPR) and its associated nucleases (Cas) 14a was used in electrochemical biosensor construction for the detection of ctDNA EGFR L858R. EGFR L858R, as the target, induced the isothermal amplification of the PER reaction, and then the CRISPR/Cas14a system was activated; subsequently, the substrate ssDNA-MB was cleaved and the electron on the surface of the gold electrode transferred, resulting in the fluctuation of the electrochemical redox signal on the electrode surface, whereas the electrochemical signal will be stable when EGFR L858R is absent. Therefore, the concentration of EGFR L858R can be quantified by electrochemical signal analysis. The low detection limit is 0.34 fM and the dynamic detection range is from 1 fM to 1 µM in this work. The PER-CRISPR/Cas14a electrochemical biosensor greatly improved the analytical sensitivity. In addition, this platform also exhibited excellent specificity, reproducibility, stability and good recovery. This study provides an efficient and novel strategy for the detection of ctDNA EGFR L858R, which has great potential for application in the diagnosis and treatment of NSCLC.


Subject(s)
Biosensing Techniques , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Reproducibility of Results , Biosensing Techniques/methods , ErbB Receptors/genetics
3.
Aging (Albany NY) ; 15(22): 13329-13344, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38015711

ABSTRACT

Circular RNAs (circRNAs) are noncoding RNAs with a circular colsed structure that play an important role in the occurrence and development of cancers. The functional mechanism of circRNAs as ceRNAs in hepatocellular carcinoma (HCC) and its effect on the invasion and metastasis of HCC need to be further studied. Five pairs of HCC tissues were selected for high-throughput sequencing, and 19 circRNAs with differential expression were obtained. The expression of circSLCO1B7 was obviously downregulated in 50 pairs of tumor tissues and plasma of HCC patients, which was closely related to the TNM stage, lymph node metastasis and tumor size. Cell functional experiments showed that circSLCO1B7 could inhibit cell growth, migration, invasion and promote cell apoptosis. In the regulatory mechanism, circSLCO1B7 sponged miR-556-3p to regulate the expression of the downstream target gene DAB2IP and induced the Epithelial-mesenchymal transition (EMT) progression. Our results indicated that circSLCO1B7 significantly inhibits the metastasis of HCC via the miR-556-3p/DAB2IP axis. Thus, circSLCO1B7 is a good candidate as a therapeutic target.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , ras GTPase-Activating Proteins/metabolism , RNA, Circular/genetics
4.
J Exp Clin Cancer Res ; 41(1): 267, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36071480

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is crucial to the progression of hepatocellular cancer (HCC). In addition, Mitochondrial calcium uniporter regulatory factor 1 (MCUR1) is commonly overexpressed in HCC to increase cellular ATP levels. Due to the highly aggressive characteristics of HCC, it is essential to identify new diagnostic biomarkers and therapeutic targets that may facilitate the diagnosis of HCC and the development of effective anti-HCC treatments. METHODS: A series of in vitro and in vivo experiments were undertaken to investigate the biological importance and underlying mechanisms of circ_0000098 in HCC. RESULTS: The expression of circ_0000098 was higher in HCC tissues compared to paired adjacent tissues. According to the receiver-operating characteristic curves, circ_0000098 functioned as a potential diagnostic tumor marker in HCC. Our experiments indicated that circ_0000098 served as a key oncogenic circRNA to increase HCC cell proliferation and invasion in vitro and HCC progression in vivo. Furthermore, mechanistic investigation demonstrated that by sequestering miR-383 from the 3'-UTR of MCUR1, circ_0000098 positively regulated MCUR1 expression in HCC cells and finally promoted HCC progression. On the other hand, inhibiting circ_0000098 in HCC cells could diminish doxorubicin (DOX) resistance by decreasing P-glycoprotein (P-gp, MDR1) expression and intracellular ATP levels. Either downregulation of MCUR1 or overexpression of miR-383 improved DOX sensitivity in HCC cells. Subsequently, a short hairpin RNA targeting circ_0000098 (referred to as sh-1) and doxorubicin (DOX) were encapsulated into platelets (PLTs), referred to as DOX/sh-1@PLT. Activated DOX/sh-1@PLT through HCC cells resulted in the creation of platelet-derived particles that were capable of delivering the DOX/sh-1 combination into HCC cells and promoting intracellular DOX accumulation. Furthermore, our in vivo experiments showed that DOX/sh-1@PLT can effectively reduce P-gp expression, promote DOX accumulation, and reverse DOX resistance. CONCLUSIONS: Our results demonstrated that circ_0000098 is an oncogenic circRNA that promotes HCC development through the miR-383/MCUR1 axis and targeting circ_0000098 with DOX/sh-1@PLT may be a promising and practical therapeutic strategy for preventing DOX resistance in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Adenosine Triphosphate , Carcinogenesis/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/genetics , Doxorubicin/pharmacology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics
5.
Mol Immunol ; 151: 218-230, 2022 11.
Article in English | MEDLINE | ID: mdl-36179604

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most severe malignant tumors that threaten human health, and its incidence is still on the rise recently. In spite of the current emerging treatment strategies, the overall prognosis of liver cancer remains worrying. Currently, immunotherapy has become a new research-active spot. The emergence of immune checkpoints and targeted immune cell therapy can significantly improve the prognosis of HCC. To a large extent, the effect of this immunotherapy depends on the tumor immune microenvironment (TME), an intricate system in which cancer cells and other non-cancer cells display various interactions. Understanding the immunosuppressive situation of these cells, along with the malignant behavior of cancer cells, can assist us to design new therapeutic approaches against tumors. Therefore, it is necessary to clarify the TME of HCC for further improvement of clinical treatment. This review discussed the functions of several immunosuppressive cells and exosomes in the latest research progress of HCC, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) and tumor-associated neutrophils (TANs) interacted actively to facilitate tumor progression. It further describes the treatment methods targeting them and the potential that needs to be explored in the future.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Myeloid-Derived Suppressor Cells , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Humans , Immunologic Factors/pharmacology , Immunotherapy/methods , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Tumor Microenvironment
6.
Front Mol Biosci ; 9: 848105, 2022.
Article in English | MEDLINE | ID: mdl-35155584

ABSTRACT

PIWI-interacting RNAs (piRNAs) are a novel type of small non-coding RNAs (sncRNAs), which are 26-31 nucleotides in length and bind to PIWI proteins. Although piRNAs were originally discovered in germline cells and are thought to be essential regulators for germline preservation, they can also influence gene expression in somatic cells. An increasing amount of data has shown that the dysregulation of piRNAs can both promote and repress the emergence and progression of human cancers through DNA methylation, transcriptional silencing, mRNA turnover, and translational control. Digestive cancers are currently a major cause of cancer deaths worldwide. piRNAs control the expression of essential genes and pathways associated with digestive cancer progression and have been reported as possible biomarkers for the diagnosis and treatment of digestive cancer. Here, we highlight recent advances in understanding the involvement of piRNAs, as well as potential diagnostic and therapeutic applications of piRNAs in various digestive cancers.

SELECTION OF CITATIONS
SEARCH DETAIL