Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834852

ABSTRACT

Plant epistatic regulation is the DNA methylation, non-coding RNA regulation, and histone modification of gene sequences without altering the genome sequence, thus regulating gene expression patterns and the growth process of plants to produce heritable changes. Epistatic regulation in plants can regulate plant responses to different environmental stresses, regulate fruit growth and development, etc. Genome editing can effectively improve plant genetic efficiency by targeting the design and efficient editing of genome-specific loci with specific nucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9). As research progresses, the CRISPR/Cas9 system has been widely used in crop breeding, gene expression, and epistatic modification due to its high editing efficiency and rapid translation of results. In this review, we summarize the recent progress of CRISPR/Cas9 in epigenome editing and look forward to the future development direction of this system in plant epigenetic modification to provide a reference for the application of CRISPR/Cas9 in genome editing.


Subject(s)
CRISPR-Cas Systems , Epigenome , Genome, Plant , Plant Breeding/methods , Plants/genetics , Gene Editing/methods
2.
RSC Adv ; 9(25): 14254-14259, 2019 May 07.
Article in English | MEDLINE | ID: mdl-35519322

ABSTRACT

Transient devices have attracted extensive interest because they allow changes in physical form and device function under the control of external stimuli or related commands and have very broad application prospects for information security, biomedical care and the environment. Transient bioelectrical devices were fabricated inspired by a silkworm moth breaking out of its cocoon, which has shown many advantages, including the use of mild stimulation, biocompatible materials, a simple process, and a universal strategy. For the fabrication of the transient devices, heat-sensitive microspheres with a 9.3 mol L-1 LiBr solution in wax shells were prepared by microfluidic technology, which were then assembled into silk fibroin (SF) electronic materials/devices, such as SF conductive film, an LED circuit on SF film, and a Ag/SF film/Pt/SF film memristor. The contribution from the LiBr/wax microspheres to the transient time of the SF films upon exposure to heat was quantitatively investigated. This approach was applied to transiently dissolve a flexible Ag-nanowire resistance circuit line on a SF substrate. Moreover, memristors constructed with a functional layer of SF were destroyed by melting the LiBr/wax microspheres. This technique paves the way for realizing transient bioelectrical devices inspired by biological behavior, which have been well optimized by nature via evolution.

3.
RSC Adv ; 8(39): 22146-22153, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-35541726

ABSTRACT

Graphitic nitrogen-doped hierarchical porous carbon nanosheets for supercapacitor application were derived from an easily obtained and green silk by simultaneous ZnCl2 activation and FeCl3 graphitization at different heating temperatures. By increasing the heating temperature from 700 to 850 °C, the degree of graphitization and BET surface area rose to their highest levels, while the nitrogen doping content was maintained at 2.24 wt%. Carbonized silk at 850 °C displays a nanosheet morphology and a considerable specific surface area (1285.31 m2 g-1), and it was fabricated into a supercapacitor as an electrode material, exhibiting superior electrochemical performance with a high specific capacitance of 178 F g-1 at 0.5 A g-1 and an excellent rate capability (81% capacitance retention ratio even at 20 A g-1) in 1 mol L-1 H2SO4 electrolyte. A symmetric supercapacitor using carbonized silk at 850 °C as the electrodes has an excellent specific energy of 14.33 W h kg-1 at a power density of 251 W kg-1 operated over a wide voltage range of 2.0 V in aqueous neutral Na2SO4 electrolyte.

SELECTION OF CITATIONS
SEARCH DETAIL
...