Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Neurosci ; 64: 74-83, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24861766

ABSTRACT

In our previous study, we reported that luteolin might exert neuroprotective functions by inhibiting the production of proinflammatory mediators, thereby suppressing microglial activation. In this study, we used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to study the effect of ubiquitin-specific processing protease 8 (USP8) in luteolin-treated microglia. Western blot analysis verified that USP8 expression is upregulated by luteolin. Researchers have found that USP8 markedly enhanced the stability of neuregulin receptor degradation protein-1 (Nrdp1), which in turn inhibited the production of proinflammatory cytokines in toll-like receptor-triggered macrophages. We next hypothesized that luteolin inhibits microglial inflammation by regulating USP8 gene expression. After transfecting BV2-immortalized murine microglial cells with USP8, a significant reduction in the degradation of Nrdp1 was observed. USP8 overexpression also reduced the production of lipopolysaccharide (LPS)-induced proinflammatory mediators such as inducible nitric oxide synthase (iNOS), nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). We also found that USP8 siRNA blocked luteolin inhibition of pro-inflammatory gene expression such as iNOS, NO, COX-2, and PGE2. Taken together, our findings suggested that luteolin inhibits microglial inflammation by enhancing USP8 protein production. We concluded that in addition to anti-inflammatory luteolin, USP8 might represent a novel mechanism for the treatment of neuroinflammation and neurodegeneration.


Subject(s)
Endopeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Neuroglia/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Endopeptidases/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Inflammation/metabolism , Luteolin/pharmacology , Mice , Neuroglia/drug effects , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin-Protein Ligases
2.
Neural Regen Res ; 8(25): 2317-26, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-25206541

ABSTRACT

The death of retinal ganglion cells is a hallmark of many optic neurodegenerative diseases such as glaucoma and retinopathy. Oxidative stress is one of the major reasons to cause the cell death. Oligomeric proanthocyanidin has many health beneficial effects including antioxidative and neuroprotective actions. Here we tested whether oligomeric proanthocyanidin may protect retinal ganglion cells against oxidative stress induced-apoptosis in vitro. Retinal ganglion cells were treated with hydrogen peroxide with or without oligomeric proanthocyanidin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that treating retinal ganglion cell line RGC-5 cells with 20 µmol/L oligomeric proanthocyanidin significantly decreased the hydrogen peroxide (H2O2) induced death. Results of flow cytometry and Hoechst staining demonstrated that the death of RGC-5 cells was mainly caused by cell apoptosis. We further found that expression of pro-apoptotic Bax and caspase-3 were significantly decreased while anti-apoptotic Bcl-2 was greatly increased in H2O2 damaged RGC-5 cells with oligomeric proanthocyanidin by western blot assay. Furthermore, in retinal explant culture, the number of surviving retinal ganglion cells in H2O2-damaged retinal ganglion cells with oligomeric proanthocyanidin was significantly increased. Our studies thus demonstrate that oligomeric proanthocyanidin can protect oxidative stress-injured retinal ganglion cells by inhibiting apoptotic process.

SELECTION OF CITATIONS
SEARCH DETAIL
...