Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(46): 31267-31273, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29148556

ABSTRACT

The CO2 adsorption and dynamic behaviors on single crystal anatase TiO2(101) surfaces were investigated by UHV-FTIRS and first-principles calculations. The IRRAS results at 90 K show that the ν3(OCO) asymmetric stretching vibration of adsorbed CO2 exhibits band splitting at rather low CO2 coverage in p-polarized IR spectra for the IR beam incident along the [101[combining macron]] direction. Co-adsorbed CO can prevent such band splitting. Ab initio molecular dynamics (AIMD) simulations revealed that the adsorbed CO2 at finite temperature does not keep a stationary adsorption state but keeps a certain swing motion: one end of the linear CO2 molecule binds to surface Ti5c sites and the other end swings within the (010) plane with a tilted angle distribution ranging from 10° to 60° relative to the [101[combining macron]] direction. By suggesting a statistical model, we confirmed that it is the swing motion that results in the band splitting phenomenon of CO2 vibration in IR spectra. The co-adsorbed CO decreases the swing angle distribution ranging from 10° to 45° through the intermolecular interaction between CO and CO2, leading to the disappearance of CO2 band splitting.

2.
Sci Rep ; 7(1): 6148, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28733624

ABSTRACT

The polaron introduced by the oxygen vacancy (Vo) dominates many surface adsorption processes and chemical reactions on reduced oxide surfaces. Based on IR spectra and DFT calculations of NO and CO adsorption, we gave two scenarios of polaron-involved molecular adsorption on reduced TiO2(110) surfaces. For NO adsorption, the subsurface polaron electron transfers to a Ti:3d-NO:2p hybrid orbital mainly on NO, leading to the large redshifts of vibration frequencies of NO. For CO adsorption, the polaron only transfers to a Ti:3d state of the surface Ti5c cation underneath CO, and thus only a weak shift of vibration frequency of CO was observed. These scenarios are determined by the energy-level matching between the polaron state and the LUMO of adsorbed molecules, which plays a crucial role in polaron-adsorbate interaction and related catalytic reactions on reduced oxide surfaces.

3.
Sci Rep ; 7: 43442, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262810

ABSTRACT

Clarifying the fundamental adsorption and diffusion process of CO2 on single crystal ZnO surfaces is critical in understanding CO2 activation and transformation over ZnO-based catalysts. By using ultrahigh vacuum-Fourier transform infrared spectroscopy (UHV-FTIRS), we observed the fine structures of CO2 vibrational bands on ZnO(100) surfaces, which are the combinations of different vibrational frequencies, originated from CO2 monomer, dimer, trimer and longer polymer chains along [0001] direction according to the density functional theory calculations. Such novel chain adsorption mode results from the relatively large attractive interaction between CO2 and Zn3c atoms in [0001] direction. Further experiments indicate that the short chains at low coverage evolve into long chains through Ostwald ripening by annealing. At higher CO2 coverage (0.7 ML), the as-grown local (2 × 1) phase of chains first evolve into an unstable local (1 × 1) phase below 150 K, and then into a stable well-defined (2 × 1) phase above 150 K.

4.
Sci Rep ; 6: 34270, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27685615

ABSTRACT

Lamb-dip spectroscopy of the C-N stretching band of methylamine has been systematically extended to P-, Q-, and R-branch by using microwave sidebands of a large number of CO2 laser lines as frequency-tunable infrared sources in a sub-Doppler spectrometer. Lamb-dip signals of more than 150 spectral lines have been observed with a resolution of 0.4 MHz and their frequencies have been precisely measured with an accuracy of ±0.1 MHz. More than 30 closed combination loops have been formed, which unambiguously confirm the assignments. For over 150 vibrational excited levels in 27 substates, refined term values have been determined and expanded in J(J + 1) power-series to determine the substate origins and the effective rotational constants. For transitions with Aa torsion-inversion symmetry in torsional state υt = 0, 57 K-doublet lines displaying asymmetry splittings have been observed and the splitting constants for levels with K = 1, 2, and 3 in the excited states have been determined. Our results provide accurate experimental information for spectroscopic studies of the interesting vibrational perturbations and intermode interactions related to the C-N stretching mode, directly support astronomical surveys, and are very relevant in practice to identification and frequency determination of the CO2-laser-pumped far-infrared laser lines of methylamine.

SELECTION OF CITATIONS
SEARCH DETAIL
...