Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Transl Stroke Res ; 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37432594

ABSTRACT

Microglia and monocytes play a critical role in immune responses to cerebral ischemia. Previous studies have demonstrated that interferon regulatory factor 4 (IRF4) and IRF5 direct microglial polarization after stroke and impact outcomes. However, IRF4/5 are expressed by both microglia and monocytes, and it is not clear if it is the microglial (central) or monocytic (peripheral) IRF4-IRF5 regulatory axis that functions in stroke. In this work, young (8-12 weeks) male pep boy (PB), IRF4 or IRF5 flox, and IRF4 or IRF5 conditional knockout (CKO) mice were used to generate 8 types of bone marrow chimeras, to differentiate the role of central (PB-to-IRF CKO) vs. peripheral (IRF CKO-to-PB) phagocytic IRF4-IRF5 axis in stroke. Chimeras generated from PB and flox mice were used as controls. All chimeras were subjected to 60-min middle cerebral artery occlusion (MCAO) model. Three days after the stroke, outcomes and inflammatory responses were analyzed. We found that PB-to-IRF4 CKO chimeras had more robust microglial pro-inflammatory responses than IRF4 CKO-to-PB chimeras, while ameliorated microglial response was seen in PB-to-IRF5 CKO vs. IRF5 CKO-to-PB chimeras. PB-to-IRF4 or IRF5 CKO chimeras had worse or better stroke outcomes respectively than their controls, whereas IRF4 or 5 CKO-to-PB chimeras had similar outcomes compared to controls. We conclude that the central IRF4/5 signaling is responsible for microglial activation and mediates stroke outcomes.

2.
Elife ; 122023 04 21.
Article in English | MEDLINE | ID: mdl-37083494

ABSTRACT

Circadian clocks are evolved to adapt to the daily environmental changes under different conditions. The ability to maintain circadian clock functions in response to various stresses and perturbations is important for organismal fitness. Here, we show that the nutrient-sensing GCN2 signaling pathway is required for robust circadian clock function under amino acid starvation in Neurospora. The deletion of GCN2 pathway components disrupts rhythmic transcription of clock gene frq by suppressing WC complex binding at the frq promoter due to its reduced histone H3 acetylation levels. Under amino acid starvation, the activation of GCN2 kinase and its downstream transcription factor CPC-1 establish a proper chromatin state at the frq promoter by recruiting the histone acetyltransferase GCN-5. The arrhythmic phenotype of the GCN2 kinase mutants under amino acid starvation can be rescued by inhibiting histone deacetylation. Finally, genome-wide transcriptional analysis indicates that the GCN2 signaling pathway maintains robust rhythmic expression of metabolic genes under amino acid starvation. Together, these results uncover an essential role of the GCN2 signaling pathway in maintaining the robust circadian clock function in response to amino acid starvation, and demonstrate the importance of histone acetylation at the frq locus in rhythmic gene expression.


Subject(s)
Circadian Clocks , Neurospora crassa , Acetylation , Amino Acids/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Histones/metabolism , Neurospora crassa/genetics , Nutrients , Signal Transduction
3.
Front Med (Lausanne) ; 10: 1128084, 2023.
Article in English | MEDLINE | ID: mdl-36968824

ABSTRACT

In the past few decades, according to the rapid development of information technology, artificial intelligence (AI) has also made significant progress in the medical field. Colorectal cancer (CRC) is the third most diagnosed cancer worldwide, and its incidence and mortality rates are increasing yearly, especially in developing countries. This article reviews the latest progress in AI in diagnosing and treating CRC based on a systematic collection of previous literature. Most CRCs transform from polyp mutations. The computer-aided detection systems can significantly improve the polyp and adenoma detection rate by early colonoscopy screening, thereby lowering the possibility of mutating into CRC. Machine learning and bioinformatics analysis can help screen and identify more CRC biomarkers to provide the basis for non-invasive screening. The Convolutional neural networks can assist in reading histopathologic tissue images, reducing the experience difference among doctors. Various studies have shown that AI-based high-level auxiliary diagnostic systems can significantly improve the readability of medical images and help clinicians make more accurate diagnostic and therapeutic decisions. Moreover, Robotic surgery systems such as da Vinci have been more and more commonly used to treat CRC patients, according to their precise operating performance. The application of AI in neoadjuvant chemoradiotherapy has further improved the treatment and efficacy evaluation of CRC. In addition, AI represented by deep learning in gene sequencing research offers a new treatment option. All of these things have seen that AI has a promising prospect in the era of precision medicine.

4.
Front Pharmacol ; 14: 1103265, 2023.
Article in English | MEDLINE | ID: mdl-36843928

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is considered a major cause of death and long-term neurological injury in newborns. Studies have demonstrated that oxidative stress and apoptosis play a major role in the progression of neonatal HIE. Echinocystic acid (EA), a natural plant extract, shows great antioxidant and antiapoptotic activities in various diseases. However, it has not yet been reported whether EA exerts a neuroprotective effect against neonatal HIE. Therefore, this study was undertaken to explore the neuroprotective effects and potential mechanisms of EA in neonatal HIE using in vivo and in vitro experiments. In the in vivo study, a hypoxic-ischemic brain damage (HIBD) model was established in neonatal mice, and EA was administered immediately after HIBD. Cerebral infarction, brain atrophy and long-term neurobehavioral deficits were measured. Hematoxylin and eosin (H&E), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and dihydroethidium (DHE) staining were performed, and the contents of malondialdehyde (MDA) and glutathione (GSH) were detected. In the in vitro study, an oxygen-glucose deprivation/reperfusion (OGD/R) model was employed in primary cortical neurons, and EA was introduced during OGD/R. Cell death and cellular ROS levels were determined. To illustrate the mechanism, the PI3K inhibitor LY294002 and Nrf2 inhibitor ML385 were used. The protein expression levels of p-PI3K, PI3K, p-Akt, Akt, Nrf2, NQO1, and HO-1 were measured by western blotting. The results showed that EA treatment significantly reduced cerebral infarction, attenuated neuronal injury, and improved brain atrophy and long-term neurobehavioral deficits in neonatal mice subjected to HIBD. Meanwhile, EA effectively increased the survival rate in neurons exposed to OGD/R and inhibited oxidative stress and apoptosis in both in vivo and in vitro studies. Moreover, EA activated the PI3K/Akt/Nrf2 pathway in neonatal mice following HIBD and in neurons after OGD/R. In conclusion, these results suggested that EA alleviated HIBD by ameliorating oxidative stress and apoptosis via activation of the PI3K/Akt/Nrf2 signaling pathway.

5.
Neural Regen Res ; 18(8): 1743-1749, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36751800

ABSTRACT

Ischemic stroke can cause blood-brain barrier (BBB) injury, which worsens brain damage induced by stroke. Abnormal expression of tight junction proteins in endothelial cells (ECs) can increase intracellular space and BBB leakage. Selective inhibition of mitogen-activated protein kinase, the negative regulatory substrate of mitogen-activated protein kinase phosphatase (MKP)-1, improves tight junction protein function in ECs, and genetic deletion of MKP-1 aggravates ischemic brain injury. However, whether the latter affects BBB integrity, and the cell type-specific mechanism underlying this process, remain unclear. In this study, we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke. We found that overexpression of MKP-1 in ECs reduced infarct volume, reduced the level of inflammatory factors interleukin-1ß, interleukin-6, and chemokine C-C motif ligand-2, inhibited vascular injury, and promoted the recovery of sensorimotor and memory/cognitive function. Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase (ERK) 1/2 and the downregulation of occludin expression. Finally, to investigate the mechanism by which MKP-1 exerted these functions in ECs, we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose, and pharmacologically inhibited the activity of MKP-1 and ERK1/2. Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death, cell monolayer leakage, and downregulation of occludin expression, and that inhibiting ERK1/2 can reverse these effects. In addition, co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2. These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2, thereby protecting the integrity of BBB, alleviating brain injury, and improving post-stroke prognosis.

6.
Transl Stroke Res ; 14(5): 776-789, 2023 10.
Article in English | MEDLINE | ID: mdl-35906327

ABSTRACT

Post-menopausal women become vulnerable to stroke and have poorer outcomes and higher mortality than age-matched men, and previous studies suggested that sex chromosomes play a vital role in mediating stroke sensitivity in the aged. It is unknown if this is due to effects of the X or Y chromosome. The present study used the XY* mouse model (with four genotypes: XX and XO gonadal females and XY and XXY gonadal males) to compare the effect of the X vs. Y chromosome compliment in stroke. Aged (18-20 months) and gonadectomized young (8-12 weeks) mice were subjected to a 60-min middle cerebral artery occlusion. Infarct volume and behavioral deficits were quantified 3 days after stroke. Microglial activation and infiltration of peripheral leukocytes in the aged ischemic brain were assessed by flow cytometry. Plasma inflammatory cytokine levels by ELISA, and brain expression of two X chromosome-linked genes, KDM6A and KDM5C by immunochemistry, were also examined. Both aged and young XX and XXY mice had worse stroke outcomes compared to XO and XY mice, respectively; however, the difference between XX vs. XXY and XO vs. XY aged mice was minimal. Mice with two copies of the X chromosome showed more robust microglial activation, higher brain-infiltrating leukocytes, elevated plasma cytokine levels, and enhanced co-localization of KDM6A and KDM5C with Iba1+ cells after stroke than mice with one X chromosome. The number of X chromosomes mediates stroke sensitivity in aged mice, which might be processed through the X chromosome-linked genes and the inflammatory responses.


Subject(s)
Stroke , X Chromosome , Male , Mice , Female , Animals , X Chromosome/genetics , Y Chromosome/genetics , Stroke/genetics , Genotype , Cytokines/genetics
7.
Aging (Albany NY) ; 14(15): 6047-6065, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35963621

ABSTRACT

Numerous neurochemical changes occur with aging and stroke mainly affects the elderly. Our previous study has found interferon regulatory factor 5 (IRF5) and 4 (IRF4) regulate neuroinflammation in young stroke mice. However, whether the IRF5-IRF4 regulatory axis has the same effect in aged brains is not known. In this study, aged (18-20-month-old), microglial IRF5 or IRF4 conditional knockout (CKO) mice were subjected to a 60-min middle cerebral artery occlusion (MCAO). Stroke outcomes were quantified at 3d after MCAO. Flow cytometry and ELISA were performed to evaluate microglial activation and immune responses. We found aged microglia express higher levels of IRF5 and lower levels of IRF4 than young microglia after stroke. IRF5 CKO aged mice had improved stroke outcomes; whereas worse outcomes were seen in IRF4 CKO vs. their flox controls. IRF5 CKO aged microglia had significantly lower levels of IL-1ß and CD68 than controls; whereas significantly higher levels of IL-1ß and TNF-α were seen in IRF4 CKO vs. control microglia. Plasma levels of TNF-α and MIP-1α were decreased in IRF5 CKO vs. flox aged mice, and IL-1ß/IL-6 levels were increased in IRF4 CKO vs. controls. The anti-inflammatory cytokines (IL-4/IL-10) levels were higher in IRF5 CKO, and lower in IRF4 CKO aged mice vs. their flox controls. IRF5 and IRF4 signaling drives microglial pro- and anti-inflammatory response respectively; microglial IRF5 is detrimental and IRF4 beneficial for aged mice in stroke. IRF5-IRF4 axis is a promising target for developing new, effective therapeutic strategies for the cerebral ischemia.


Subject(s)
Brain Ischemia , Stroke , Animals , Infarction, Middle Cerebral Artery , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mice , Microglia/metabolism , Stroke/genetics , Tumor Necrosis Factor-alpha/pharmacology
8.
mBio ; 13(4): e0135122, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35699373

ABSTRACT

It is essential for aerobic organisms to maintain the homeostasis of intracellular reactive oxygen species (ROS) for survival and adaptation to the environment. In line with other eukaryotes, the catalase of Neurospora crassa is an important enzyme for clearing ROS, and its expression is tightly regulated by the growth phase and various oxidative stresses. Our study reveals that, in N. crassa, histone deacetylase 2 (HDA-2) and its catalytic activity positively regulate the expression of the catalase-3 (cat-3) gene. HDA-2, SIF-2, and SNT-1 may form a subcomplex with such a regulation role. As expected, deletion of HDA-2 or SIF-2 subunit increased acetylation levels of histone H4, indicating that loss of HDA-2 complex fails to deacetylate H4 at the cat-3 locus. Furthermore, loss of HDA-2 or its catalytic activity led to dramatic decreases of TFIIB and RNA polymerase II (RNAP II) recruitment at the cat-3 locus and also resulted in high deposition of H2A.Z at the promoter and transcription start site (TSS) regions of the cat-3 gene. Collectively, this study strongly demonstrates that the HDA-2-containing complex activates the transcription of the cat-3 gene by facilitating preinitiation complex (PIC) assembly and antagonizing the inhibition of H2A.Z at the cat-3 locus through H4 acetylation. IMPORTANCE Clearance of reactive oxygen species (ROS) is critical to the survival of aerobic organisms. In the model filamentous fungus Neurospora crassa, catalase-3 (cat-3) expression is activated in response to H2O2-induced ROS stress. We found that histone deacetylase 2 (HDA-2) positively regulates cat-3 transcription in N. crassa; this is widely divergent from the classical repressive role of most histone deacetylases. Like HDA-2, the SIF-2 or SNT-1 subunit of HDA-2-containing complex plays a positive role in cat-3 transcription. Furthermore, we also found that HDA-2-containing complex provides an appropriate chromatin environment to facilitate PIC assembly and to antagonize the inhibition role of H2A.Z at the cat-3 locus through H4 acetylation. Taken together, our results establish a mechanism for how the HDA-2-containing complex regulates transcription of the cat-3 gene in N. crassa.


Subject(s)
Neurospora crassa , Catalase/genetics , Catalase/metabolism , Histone Deacetylase 2/metabolism , Histones/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Neurospora crassa/metabolism , Reactive Oxygen Species/metabolism
9.
Biol Sex Differ ; 12(1): 66, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930441

ABSTRACT

BACKGROUND: Sex differences in COVID-19 are increasingly recognized globally. Although infection rates are similar between the sexes, men have more severe illness. The mechanism underlying these sex differences is unknown, but a differential immune response to COVID-19 has been implicated in several recent studies. However, how sex differences shape the immune response to COVID-19 remains understudied. METHODS: We collected demographics and blood samples from over 600 hospitalized patients diagnosed with COVID-19 from May 24th 2020 to April 28th, 2021. These patients were divided into two cohorts: Cohort 1 was further classified into three groups based on the severity of the disease (mild, moderate and severe); Cohort 2 patients were longitudinally followed at three time points from hospital admission (1 day, 7 days, and 14 days). MultiPlex and conventional ELISA were used to examine inflammatory mediator levels in the plasma in both cohorts. Flow cytometry was conducted to examine leukocyte responses in Cohort 2. RESULTS: There were more COVID+ males in the total cohort, and the mortality rate was higher in males vs. females. More male patients were seen in most age groups (in 10-year increments), and in most ethnic groups. Males with severe disease had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-8, MCP-1) than females; levels of IL-8, GRO, sCD40L, MIP-1ß, MCP-1 were also significantly higher in severe vs. mild or control patients in males but not in females. Females had significantly higher anti-inflammatory cytokine IL-10 levels at 14 days compared to males, and the level of IL-10 significantly increased in moderate vs. the control group in females but not in males. At 7 days and 14 days, males had significantly more circulating neutrophils and monocytes than females; however, B cell numbers were significantly higher in females vs. males. CONCLUSION: Sex differences exist in hospitalized patients with acute COVID-19 respiratory tract infection. Exacerbated inflammatory responses were seen in male vs. female patients, even when matched for disease severity. Males appear to have a more robust innate immune response, and females mount a stronger adaptive immune response to COVID-19 respiratory tract infection.


Subject(s)
COVID-19 , Immunity , COVID-19/immunology , Female , Humans , Male , Sex Factors
10.
J Neurosci Methods ; 364: 109359, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34537225

ABSTRACT

BACKGROUND: Microglia play a central role in neuroinflammation in various CNS diseases.Neonatal microglial culture has been extensively used to in vitro study microglial activation; however, as many neuroinflammatory diseases occur in the elderly, the neonatal microglial culture may not fully replicate the aged microglial activity seen in these diseases. NEW METHOD: Primary microglia from both 18-24-month-old and P0-P4 C57BL/6 mice were cultured simultaneously. Morphology and activation profiles of the two age groups of microglia were examined following ischemic stimulation, by ELISA, RT-PCR, live microscopy, immunocytochemistry, and Western blotting. RESULTS: We showed that aged microglia had larger cell bodies, more cytoplasmic inclusions, and enhanced phagocytosis than neonatal microglia. Cytokine production in these cells exhibited heterogeneity either after or before ischemic stimulation. The baseline expression of microglial marker CD11b was significantly higher in aged vs. neonatal cells; ischemic stimulation increased the expression in neonatal vs. aged microglia only in males but not in females. COMPARISON WITH EXISTING METHODS: Previous primary microglia cultures have been limited to using neonatal/adult cells. This method is complementary to exiting methods and works for aged microglia, and does not suffer from potential limitations due to filtering artifacts. The protocol renders microglial culture no need for meningeal/hippocampal removal prior to brain tissue dissociation, and compares microglia between males vs. females, and between the aged vs. neonates. CONCLUSIONS: We concluded that neonatal microglial culture is not appropriate for those in vitro studies that mimic the neuroinflammatory central nervous system disorders occurring in the elderly, in which case the aged microglial culture should be applied, and sex differences should be considered.


Subject(s)
Age Factors , Microglia , Sex Characteristics , Animals , Cell Culture Techniques , Female , Hippocampus , Male , Mice , Mice, Inbred C57BL , Phagocytosis
11.
Stroke ; 52(10): 3362-3373, 2021 10.
Article in English | MEDLINE | ID: mdl-34353112

ABSTRACT

Background and Purpose: CD200 (cluster of differentiation 200), a highly glycosylated protein primarily expressed on neurons in the central nervous system, binds with its receptor CD200R to form an endogenous inhibitory signal against immune responses. However, little is known about the effect of neuronal CD200 signaling in cerebral ischemia. The aim of this study was to investigate how neuronal CD200 signaling impacts poststroke inflammation and the ischemic injury. Methods: CD200 tma1lf/fl:Thy1CreER mice were treated with tamoxifen to induce conditional gene knockout (ICKO) of neuronal CD200. The mice were subjected to a 60-minute transient middle cerebral artery occlusion. Stroke outcomes, apoptotic cell death, immune cell infiltration, microglia activation, and other inflammatory profiles were evaluated at 3 and 7 days after stroke. Results: Infarct volumes were significantly larger, and behavioral deficits more severe in ICKO versus control mice at 3 days after middle cerebral artery occlusion. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay also revealed a significant increase in apoptotic neuronal death in CD200 ICKO mice. An enhancement in lymphocytic infiltration and microglial proinflammatory responses were revealed by flow cytometry at 3 and 7 days after stroke in ICKO mice, accompanied by an increased microglial phagocytosis activity. Plasma proinflammatory cytokine (TNFα [tumor necrosis factor alpha] and IL [interleukin]-1ß) levels significantly increased at 3 days, and IL-1ß/IL-6 levels increased at 7 days in ICKO versus control animals. ICKO led to significantly lower baseline level of CD200 both in brain and plasma. Conclusions: Neuronal CD200 inhibits proinflammatory responses and is protective against stroke injury.


Subject(s)
Antigens, CD/analysis , Ischemic Stroke/prevention & control , Neurons/physiology , Neuroprotection , Stroke/prevention & control , Animals , Antigens, CD/genetics , Apoptosis , Cytokines/metabolism , Immunity, Cellular , Infarction, Middle Cerebral Artery/complications , Inflammation/etiology , Inflammation/prevention & control , Ischemic Stroke/psychology , Macrophage Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/immunology , Neutrophil Infiltration , Signal Transduction , Treatment Outcome
12.
J Neuroinflammation ; 18(1): 70, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33712031

ABSTRACT

BACKGROUND: Stroke is a sexually dimorphic disease. Previous studies have found that young females are protected against ischemia compared to males, partially due to the protective effect of ovarian hormones, particularly estrogen (E2). However, there are also genetic and epigenetic effects of X chromosome dosage that contribute to stroke sensitivity and neuroinflammation after injury, especially in the aged. Genes that escape from X chromosome inactivation (XCI) contribute to sex-specific phenotypes in many disorders. Kdm5c and kdm6a are X escapee genes that demethylate H3K4me3 and H3K27me3, respectively. We hypothesized that the two demethylases play critical roles in mediating the stroke sensitivity. METHODS: To identify the X escapee genes involved in stroke, we performed RNA-seq in flow-sorted microglia from aged male and female wild type (WT) mice subjected to middle cerebral artery occlusion (MCAO). The expression of these genes (kdm5c/kdm6a) were confirmed in four core genotypes (FCG) mice and in post-mortem human stroke brains by immunohistochemistry (IHC), Western blot, and RT-PCR. Chromatin immunoprecipitation (ChIP) assays were conducted to detect DNA levels of inflammatory interferon regulatory factor (IRF) 4/5 precipitated by histone H3K4 and H3K27 antibodies. Manipulation of kdm5c/kdm6a expression with siRNA or lentivirus was performed in microglial culture, to determine downstream pathways and examine the regulatory roles in inflammatory cytokine production. RESULTS: Kdm5c and kdm6a mRNA levels were significantly higher in aged WT female vs. male microglia, and the sex difference also existed in ischemic brains from FCG mice and human stroke patients. The ChIP assay showed the IRF 4/5 had higher binding levels to demethylated H3K4 or H3K27, respectively, in female vs. male ischemic microglia. Knockdown or over expression of kdm5c/kdm6a with siRNA or lentivirus altered the methylation of H3K4 or H3K27 at the IRF4/5 genes, which in turn, impacted the production of inflammatory cytokines. CONCLUSIONS: The KDM-Histone-IRF pathways are suggested to mediate sex differences in cerebral ischemia. Epigenetic modification of stroke-related genes constitutes an important mechanism underlying the ischemic sexual dimorphism.


Subject(s)
Epigenesis, Genetic/genetics , Inflammation/genetics , Ischemic Stroke/genetics , Sex Characteristics , X Chromosome/genetics , Aged , Aged, 80 and over , Animals , Chromatin Immunoprecipitation , Cytokines/biosynthesis , Female , Genotype , Histone Demethylases/genetics , Humans , Male , Mice , Middle Aged , RNA, Small Interfering/genetics , Signal Transduction/genetics
13.
Proc Natl Acad Sci U S A ; 117(3): 1742-1752, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31892541

ABSTRACT

Microglial activation plays a central role in poststroke inflammation and causes secondary neuronal damage; however, it also contributes in debris clearance and chronic recovery. Microglial pro- and antiinflammatory responses (or so-called M1-M2 phenotypes) coexist and antagonize each other throughout the disease progress. As a result of this balance, poststroke immune responses alter stroke outcomes. Our previous study found microglial expression of interferon regulatory factor 5 (IRF5) and IRF4 was related to pro- and antiinflammatory responses, respectively. In the present study, we genetically modified the IRF5 and IRF4 signaling to explore their roles in stroke. Both in vitro and in vivo assays were utilized; IRF5 or IRF4 small interfering RNA (siRNA), lentivirus, and conditional knockout (CKO) techniques were employed to modulate IRF5 or IRF4 expression in microglia. We used a transient middle cerebral artery occlusion model to induce stroke and examined both acute and chronic stroke outcomes. Poststroke inflammation was evaluated with flow cytometry, RT-PCR, MultiPlex, and immunofluorescence staining. An oscillating pattern of the IRF5-IRF4 regulatory axis function was revealed. Down-regulation of IRF5 signaling by siRNA or CKO resulted in increased IRF4 expression, enhanced M2 activation, quenched proinflammatory responses, and improved stroke outcomes, whereas down-regulation of IRF4 led to increased IRF5 expression, enhanced M1 activation, exacerbated proinflammatory responses, and worse functional recovery. Up-regulation of IRF4 or IRF5 by lentivirus induced similar results. We conclude that the IRF5-IRF4 regulatory axis is a key determinant in microglial activation. The IRF5-IRF4 regulatory axis is a potential therapeutic target for neuroinflammation and ischemic stroke.


Subject(s)
Brain Ischemia/metabolism , Inflammation/metabolism , Interferon Regulatory Factors/metabolism , Microglia/metabolism , Neurons/metabolism , Stroke/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Interferon Regulatory Factors/genetics , Macrophage Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Small Interfering , Signal Transduction , Transcriptome
14.
Free Radic Biol Med ; 121: 136-148, 2018 06.
Article in English | MEDLINE | ID: mdl-29738831

ABSTRACT

In eukaryotes, deposition of the histone variant H2A.Z into nucleosomes through the chromatin remodeling complex, SWR1, is a crucial step in modulating gene transcription. Recently, H2A.Z has been shown to control the expression of responsive genes, but the underlying mechanism of how H2A.Z responds to physiological stimuli is not well understood. Here, we reveal that, in Neurospora crassa, H2A.Z is a negative regulator of catalase-3 gene, which is responsible for resistance to oxidative stress. H2A.Z represses cat-3 gene expression through direct incorporation at cat-3 locus in a SWR1 complex dependent pathway. Notably, loss of H2A.Z or SWR1 subunits leads to increased binding of a transcription factor, CPC1, at cat-3 locus. Additionally, introduction of plasmids containing gene encoding H2A.Z or SWR1 complex subunits into wild-type strains decreased CAT-3 expression, indicating that H2A.Z counteracts the positive effect of CPC1 to achieve low level cat-3 expression under non-inductive condition. Furthermore, upon oxidative stress, H2A.Z is rapidly evicted from cat-3 locus for the recruitment of CPC1, resulting in robust and full cat-3 gene expression in response to external stimuli. Collectively, this study strongly demonstrates that H2A.Z antagonizes the function of transcription factor to regulate responsive gene transcription under normal conditions and to poise for gene full activation under oxidative stress.


Subject(s)
Catalase/genetics , Gene Expression Regulation, Fungal , Genetic Variation , Histones/genetics , Oxidative Stress , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Catalase/metabolism , Chromatin Assembly and Disassembly , Mutation , Nucleosomes , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics
15.
Free Radic Biol Med ; 117: 218-227, 2018 03.
Article in English | MEDLINE | ID: mdl-29421311

ABSTRACT

Catalase is an important enzyme found in nearly all aerobic organisms and plays an essential role in protecting cells from oxidative damage by catalyzing the degradation of hydrogen peroxide into water and oxygen. In filamentous fungus Neurospora crassa, the expression levels of catalases are rigorously regulated by morphogenetic transition during growth and development in cells. Our study revealed that catalase-3 transcription is positively regulated by histone acetyltransferase GCN5 and the cross-pathway control gene cpc-1, as the cat-3 expression level is significantly decreased in gcn5KO and cpc-1 (j-5) mutants. Moreover, gcn5KO and cpc-1 (j-5) mutants could not respond to H2O2 treatment due to the inadequate cat-3 transcription, while wild-type strains showed high expression levels of catalase upon H2O2 treatment. The global H3 acetylation and the acetylation of H3 at cat-3 locus dramatically decreased in gcn5KO under normal or oxidative stress conditions. Meanwhile, the expression of CAT-3 is reduced in gcn5E146Q, the catalytically dead mutant, suggesting that the catalytic activity of GCN5 functions in regulation of cat-3 transcription. In addition, GCN5 cannot acetylate histone H3 efficiently at cat-3 locus in cpc-1 (j-5) mutant strains under normal or oxidative stress conditions. Furthermore, ChIP assays data revealed that the CPC1/GCN4 can directly target the cat-3 promoter region, which may recruit GCN5 to modify the histone acetylation of this region. These results disclosed a distinctive function of CPC1/GCN4 in the regulatory pathway of cat-3 transcription, which is mediated by GCN5-dependent acetylation.


Subject(s)
Catalase/biosynthesis , Fungal Proteins/metabolism , Genes, Fungal/physiology , Neurospora crassa/physiology , Oxidative Stress/physiology , Gene Expression Regulation, Fungal , Histone Acetyltransferases/metabolism
16.
J Hazard Mater ; 325: 340-366, 2017 Mar 05.
Article in English | MEDLINE | ID: mdl-27932035

ABSTRACT

Since there is increasing concern for the impact of air quality on human health, the present work surveys the materials and technologies for air purification using photocatalytic materials. The coverage includes (1) current photocatalytic materials for the decomposition of chemical contaminants and disinfection of pathogens present in air and (2) photocatalytic air purification systems that are used currently and under development. The present work focuses on five main themes. First, the mechanisms of photodegradation and photodisinfection are explained. Second, system designs for photocatalytic air purification are surveyed. Third, the photocatalytic materials used for air purification and their characteristics are considered, including both conventional and more recently developed photocatalysts. Fourth, the methods used to fabricate these materials are discussed. Fifth, the most significant coverage is devoted to materials design strategies aimed at improving the performance of photocatalysts for air purification. The review concludes with a brief consideration of promising future directions for materials research in photocatalysis.


Subject(s)
Air Pollutants/chemistry , Air Pollution , Disinfection/methods , Catalysis , Cities , Metals/chemistry , Microscopy, Electron, Scanning , Oxidation-Reduction , Oxides/chemistry , Photochemical Processes , Photolysis , Surface Plasmon Resonance , Titanium/chemistry , Zinc Oxide/chemistry
17.
Nucleic Acids Res ; 42(10): 6183-95, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24711369

ABSTRACT

In Neurospora crassa, the methionine synthase gene met-8 plays a key role in methionine synthesis. In this study, we found that MET-8 protein levels were compromised in several mutants defective in proper heterochromatin formation. Bioinformatics analysis revealed a 50-kb AT-rich region adjacent to the met-8 promoter. ChIP assays confirmed that trimethylated H3K9 was enriched in this region, indicating that heterochromatin may form upstream of met-8. In an H3K9R mutant strain, the output of met-8 was dramatically reduced, similar to what we observed in mutant strains that had defective heterochromatin formation. Furthermore, the production of ectopically expressed met-8 at the his-3 locus in the absence of a normal heterochromatin environment was inefficient, whereas ectopic expression of met-8 downstream of two other heterochromatin domains was efficient. In addition, our data show that the expression of mig-6 was also controlled by an upstream 4.2-kb AT-rich region similar to that of the met-8 gene, and we demonstrate that the AT-rich regions adjacent to met-8 or mig-6 are required for their peak expression. Our study indicates that met-8 and mig-6 may represent a novel type of gene, whose expression relies on the proper formation of a nearby heterochromatin region.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Heterochromatin/metabolism , Neurospora crassa/genetics , 5' Untranslated Regions , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Fungal Proteins/metabolism , Gene Deletion , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Neurospora crassa/enzymology , Neurospora crassa/metabolism , RNA Polymerase II/metabolism
18.
Int J Mol Med ; 32(6): 1262-72, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24126885

ABSTRACT

Acute kidney injury (AKI) is a common syndrome with a high mortality and morbidity rate. Recent developments in stem cell research have shown great promise for the treatment of AKI. The aim of this study was to investigate the therapeutic potential and anti-apoptotic mechanisms of action of bone marrow-derived mesenchymal stem cells (BM-MSCs) in the treatment of AKI induced by cisplatin in vivo and in vitro. In vivo, adult male Sprague-Dawley rats (n=24) were administered BM-MSCs intravenously one day after cisplatin injection. The rats were sacrificed four days after the cisplatin injection and the effects of BM-MSCs on cisplatin-induced AKI, as well as the anti-apoptotic mechanisms involved were investigated. In vitro, NRK-52E cells, a rat renal proximal tubular cell line, were incubated in conditioned medium or complete medium in the presence or absence of cisplatin, followed by cell proliferation and apoptosis assays. The infusion of BM-MSCs preserved renal function, ameliorated renal tubular lesions, reduced apoptosis and accelerated tubular cell regeneration in the rats with cisplatin-induced AKI. The infusion of BM-MSCs also inhibited the activation of two mitogen-activated protein kinases, p38 and ERK, downregulated the expression of Bax and cleaved caspase-3, and upregulated the expression of Bcl-2. BM-MSC-conditioned medium improved NRK-52E cell viability and inhibited apoptosis. In conclusion, our results demonstrate that injecting rats with BM-MSCs protects renal function and structure in cisplatin-induced AKI by inhibiting cell apoptosis in vivo. BM-MSC-conditioned medium protects renal cells from apoptosis induced by cisplatin in vitro. Hence, the infusion of BM-MSCs should be considered as a possible therapeutic strategy for the treatment of AKI.


Subject(s)
Acute Kidney Injury/pathology , Acute Kidney Injury/therapy , Apoptosis/drug effects , Bone Marrow Cells/cytology , Cisplatin/adverse effects , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Acute Kidney Injury/genetics , Acute Kidney Injury/physiopathology , Animals , Apoptosis/genetics , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell Shape/genetics , Cell Survival/drug effects , Cell Survival/genetics , Culture Media, Conditioned/pharmacology , Gene Expression Regulation/drug effects , Immunophenotyping , Kidney Function Tests , Kidney Tubules/drug effects , Kidney Tubules/enzymology , Kidney Tubules/pathology , Kidney Tubules/physiopathology , Male , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Regeneration/drug effects , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
19.
Int Arch Occup Environ Health ; 77(3): 205-12, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14762667

ABSTRACT

OBJECTIVE: This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV) and driving fatigue in healthy subjects during simulated driving, by the use of power spectrum analysis and subjective evaluation. MATERIALS AND METHODS: Sixty healthy subjects (29.6+/-3.3 years) were randomly divided into three groups, A, B and C, and the subjects of each group participated in the simulated driving for 90 min with vertical sinusoidal vibration (acceleration 0.05 g) of 1.8 Hz (group A), 6 Hz (group B) and no vibration (group C), respectively. Low-frequency (LF) and high-frequency (HF) components of HRV, reflecting sympathetic and parasympathetic activities, and the LF:HF ratio, indicating sympathovagal balance, were measured throughout all periods. All indices of HRV were calculated in the pre-experiment period, mid-experiment period and end-experiment period, and were analyzed by repeated measures analysis of variance. Subjective responses to a questionnaire were obtained after the simulated task for the three groups. RESULTS: Significant differences in all indices of HRV were observed between different experiment periods and between any two groups. The ratings of subjective fatigue exhibited significant differences between any two groups. CONCLUSION: The drivers' fatigue ratings were associated with vibration frequencies in simulated driving. The study quantitatively demonstrated that different effects on autonomic nerve activities were induced by different vibration frequencies.


Subject(s)
Automobile Driving , Fatigue/etiology , Heart Rate , Vibration , Adult , Humans
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 20(1): 97-100, 2003 Mar.
Article in Chinese | MEDLINE | ID: mdl-12744174

ABSTRACT

The purpose of this study was to assess the effect of magnitopuncture stimuli for reducing driver mental stress and fatigue using power spectral analysis of the heart rate variability (HRV) and subjective evaluation. The experiments were divided into A-group and B-group. In both groups the subjects performed the simulator for 90 minutes under a vibration conditions with an erect sitting posture in a silent environment, and magnitopuncture was put on the acupoints when performing the task for one hour in A-group. In this study HRV exhibited a significant difference between the two groups after the simulating task (P < 0.05). A conclusion that magnitopuncture stimuli can reduce the driver mental stress and fatigue effectively was drawn.


Subject(s)
Autonomic Nervous System/physiopathology , Electric Stimulation Therapy/methods , Fatigue/therapy , Heart Rate/physiology , Magnetics/therapeutic use , Vibration/adverse effects , Acupuncture Points , Adult , Automobile Driving , Humans , Male , Stress, Physiological/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...