Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Hum Brain Mapp ; 45(7): e26694, 2024 May.
Article in English | MEDLINE | ID: mdl-38727014

ABSTRACT

Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairments of SZ, the findings have exhibited great heterogeneity. We aimed to identify congruous and replicable connectivity patterns capable of predicting positive and negative symptoms as well as cognitive impairments in SZ. Predictable functional connections (FCs) were identified by employing an individualized prediction model, whose replicability was further evaluated across three independent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network were replicable in prediction of positive symptoms, while sensorimotor network was predictive of negative symptoms. Temporal-parahippocampal network was consistently identified to be associated with reduced cognitive function. These replicable 23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts (82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs showed comparable accuracies to those built using the whole-brain features in predicting symptoms/cognition of SZ across the three cohorts (r = .17-.33, p < .05). Overall, our findings provide new insights into the neural underpinnings of SZ symptoms/cognition and offer potential targets for further research and possible clinical interventions.


Subject(s)
Cognitive Dysfunction , Connectome , Magnetic Resonance Imaging , Nerve Net , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Male , Adult , Female , Connectome/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cohort Studies , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Young Adult , Middle Aged
2.
Nat Commun ; 15(1): 4411, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782943

ABSTRACT

Cross-sectional studies have demonstrated strong associations between physical frailty and depression. However, the evidence from prospective studies is limited. Here, we analyze data of 352,277 participants from UK Biobank with 12.25-year follow-up. Compared with non-frail individuals, pre-frail and frail individuals have increased risk for incident depression independent of many putative confounds. Altogether, pre-frail and frail individuals account for 20.58% and 13.16% of depression cases by population attributable fraction analyses. Higher risks are observed in males and individuals younger than 65 years than their counterparts. Mendelian randomization analyses support a potential causal effect of frailty on depression. Associations are also observed between inflammatory markers, brain volumes, and incident depression. Moreover, these regional brain volumes and three inflammatory markers-C-reactive protein, neutrophils, and leukocytes-significantly mediate associations between frailty and depression. Given the scarcity of curative treatment for depression and the high disease burden, identifying potential modifiable risk factors of depression, such as frailty, is needed.


Subject(s)
Brain , Depression , Frailty , Inflammation , Mendelian Randomization Analysis , Humans , Male , Female , Depression/genetics , Frailty/genetics , Aged , Brain/pathology , Brain/diagnostic imaging , Brain/metabolism , Middle Aged , Inflammation/genetics , Risk Factors , United Kingdom/epidemiology , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Cross-Sectional Studies , Prospective Studies , Adult , Biomarkers , Neutrophils
3.
Neuroimage ; 293: 120616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697587

ABSTRACT

Cortical parcellation plays a pivotal role in elucidating the brain organization. Despite the growing efforts to develop parcellation algorithms using functional magnetic resonance imaging, achieving a balance between intra-individual specificity and inter-individual consistency proves challenging, making the generation of high-quality, subject-consistent cortical parcellations particularly elusive. To solve this problem, our paper proposes a fully automated individual cortical parcellation method based on consensus graph representation learning. The method integrates spectral embedding with low-rank tensor learning into a unified optimization model, which uses group-common connectivity patterns captured by low-rank tensor learning to optimize subjects' functional networks. This not only ensures consistency in brain representations across different subjects but also enhances the quality of each subject's representation matrix by eliminating spurious connections. More importantly, it achieves an adaptive balance between intra-individual specificity and inter-individual consistency during this process. Experiments conducted on a test-retest dataset from the Human Connectome Project (HCP) demonstrate that our method outperforms existing methods in terms of reproducibility, functional homogeneity, and alignment with task activation. Extensive network-based comparisons on the HCP S900 dataset reveal that the functional network derived from our cortical parcellation method exhibits greater capabilities in gender identification and behavior prediction than other approaches.


Subject(s)
Cerebral Cortex , Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Connectome/methods , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cerebral Cortex/anatomy & histology , Machine Learning , Female , Male , Image Processing, Computer-Assisted/methods , Adult , Algorithms , Reproducibility of Results
4.
Biol Psychiatry ; 95(9): 828-838, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38151182

ABSTRACT

BACKGROUND: Environmental exposures play a crucial role in shaping children's behavioral development. However, the mechanisms by which these exposures interact with brain functional connectivity and influence behavior remain unexplored. METHODS: We investigated the comprehensive environment-brain-behavior triple interactions through rigorous association, prediction, and mediation analyses, while adjusting for multiple confounders. Particularly, we examined the predictive power of brain functional network connectivity (FNC) and 41 environmental exposures for 23 behaviors related to cognitive ability and mental health in 7655 children selected from the Adolescent Brain Cognitive Development (ABCD) Study at both baseline and follow-up. RESULTS: FNC demonstrated more predictability for cognitive abilities than for mental health, with cross-validation from the UK Biobank study (N = 20,852), highlighting the importance of thalamus and hippocampus in longitudinal prediction, while FNC+environment demonstrated more predictive power than FNC in both cross-sectional and longitudinal prediction of all behaviors, especially for mental health (r = 0.32-0.63). We found that family and neighborhood exposures were common critical environmental influencers on cognitive ability and mental health, which can be mediated by FNC significantly. Healthy perinatal development was a unique protective factor for higher cognitive ability, whereas sleep problems, family conflicts, and adverse school environments specifically increased risk of poor mental health. CONCLUSIONS: This work revealed comprehensive environment-brain-behavior triple interactions based on the ABCD Study, identified cognitive control and default mode networks as the most predictive functional networks for a wide repertoire of behaviors, and underscored the long-lasting impact of critical environmental exposures on childhood development, in which sleep problems were the most prominent factors affecting mental health.


Subject(s)
Cognition , Sleep Wake Disorders , Child , Adolescent , Humans , Cross-Sectional Studies , Mental Health , Brain , Magnetic Resonance Imaging
5.
Schizophr Res ; 264: 130-139, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128344

ABSTRACT

BACKGROUND: Similarities among schizophrenia (SZ), schizoaffective disorder (SAD) and bipolar disorder (BP) including clinical phenotypes, brain alterations and risk genes, make it challenging to perform reliable separation among them. However, previous subtype identification that transcend traditional diagnostic boundaries were based on group-level neuroimaging features, ignoring individual-level inferences. METHODS: 455 psychoses (178 SZs, 134 SADs and 143 BPs), their first-degree relatives (N = 453) and healthy controls (HCs, N = 220) were collected from Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP I) consortium. Individualized covariance structural differential networks (ICSDNs) were constructed for each patient and multi-site clustering was used to identify psychosis subtypes. Group differences between subtypes in clinical phenotypes and voxel-wise fractional amplitude of low frequency fluctuation (fALFF) were calculated, as well as between the corresponding relatives. RESULTS: Two psychosis subtypes were identified with increased whole brain structural covariance, with decreased connectivity between amygdala-hippocampus and temporal-occipital cortex in subtype I (S-I) compared to subtype II (S-II), which was replicated under different clustering methods, number of edges and across datasets (B-SNIP II) and different brain atlases. S-I had higher emotional-related symptoms than S-II and showed significant fALFF decrease in temporal and occipital cortex, while S-II was more similar to HC. This pattern was consistently validated on relatives of S-I and S-II in both fALFF and clinical symptoms. CONCLUSIONS: These findings reconcile categorical and dimensional perspectives of psychosis neurobiological heterogeneity, indicating that relatives of S-I might have greater predisposition in developing psychosis, while relatives of S-II are more likely to be healthy. This study contributes to the development of neuroimaging informed diagnostic classifications within psychosis spectrum.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , Humans , Family/psychology , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/genetics , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Bipolar Disorder/psychology , Brain/diagnostic imaging , Magnetic Resonance Imaging
6.
EBioMedicine ; 93: 104679, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37356206

ABSTRACT

BACKGROUND: Chronic liver diseases of all etiologies exist along a spectrum with varying degrees of hepatic fibrosis. Despite accumulating evidence implying associations between liver fibrosis and cognitive functioning, there is limited research exploring the underlying neurobiological factors and the possible mediating role of inflammation on the liver-brain axis. METHODS: Using data from the UK Biobank, we examined the cross-sectional association of liver fibrosis (as measured by Fibrosis-4 score) with cognitive functioning and regional grey matter volumes (GMVs) while adjusting for numerous covariates and multiple comparisons. We further performed post-hoc preliminary analysis to investigate the mediating effect of C-reactive protein (CRP) on the association between liver fibrosis and both cognitive functioning and GMVs. FINDINGS: We analysed behaviour from up to 447,626 participants (N ranged from 45,055 to 447,533 per specific cognitive metric) 37 years and older. 38,244 participants (age range 44-82 years) had GMV data collected at a median 9-year follow-up. Liver fibrosis showed significant associations with cognitive performance in reasoning, working memory, visual memory, prospective memory, executive function, and processing speed. Subgroup analysis indicated larger effects sizes for symbol digital substitution but smaller effect sizes for trail making in middle-aged people than their old counterparts. Neuroimaging analyses revealed significant associations between liver fibrosis and reduced regional GMVs, primarily in the hippocampus, thalamus, ventral striatum, parahippocampal gyrus, brain stem, and cerebellum. CRP levels were significantly higher in adults with advanced liver fibrosis than those without, indicating an elevated systemic inflammation. Moreover, the serum CRP significantly mediated the effect of liver fibrosis on most cognitive measures and regional GMVs in the hippocampus and brain stem. INTERPRETATION: This study provides a well-powered characterization of associations between liver fibrosis, cognitive impairment, and grey matter atrophy. It also highlights the possibly mediating role of systemic inflammation on the liver-brain axis. Early surveillance and prevention of liver diseases may reduce cognitive decline and brain GMV loss. FUNDING: National Science Foundation, and National Institutes of Health.


Subject(s)
C-Reactive Protein , Magnetic Resonance Imaging , United States , Adult , Middle Aged , Humans , Aged , Aged, 80 and over , C-Reactive Protein/metabolism , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Brain/pathology , Inflammation/pathology , Liver Cirrhosis/metabolism
7.
IEEE Trans Med Imaging ; 42(9): 2552-2565, 2023 09.
Article in English | MEDLINE | ID: mdl-37030781

ABSTRACT

Survival analysis is to estimate the survival time for an individual or a group of patients, which is a valid solution for cancer treatments. Recent studies suggested that the integrative analysis of histopathological images and genomic data can better predict the survival of cancer patients than simply using single bio-marker, for different bio-markers may provide complementary information. However, for the given multi-modal data that may contain irrelevant or redundant features, it is still challenge to design a distance metric that can simultaneously discover significant features and measure the difference of survival time among different patients. To solve this issue, we propose a Feature-Aware Multi-modal Metric Learning method (FAM3L), which not only learns the metric for distance constraints on patients' survival time, but also identifies important images and genomic features for survival analysis. Specifically, for each modality of data, we firstly design one feature-aware metric that can be decoupled into a traditional distance metric and a diagonal weight for important feature identification. Then, in order to explore the complex correlation across multiple modality data, we apply Hilbert-Schmidt Independence Criterion (HSIC) to jointly learn multiple metrics. Finally, based on the learned distance metrics, we apply the Cox proportional hazards model for prognosis prediction. We evaluate the performance of our proposed FAM3L method on three cancer cohorts derived from The Cancer Genome Atlas (TCGA), the experimental results demonstrate that our method can not only achieve superior performance for cancer prognosis, but also identify meaningful image and genomic features correlating strongly with cancer survival.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Survival Analysis , Genomics , Prognosis
8.
Lancet Digit Health ; 5(6): e350-e359, 2023 06.
Article in English | MEDLINE | ID: mdl-37061351

ABSTRACT

BACKGROUND: Physical frailty is a state of increased vulnerability to stressors and is associated with serious health issues. However, how frailty affects and is affected by numerous other factors, including mental health and brain structure, remains underexplored. We aimed to investigate the mutual effects of frailty and health using large, multidimensional data. METHODS: For this population-based study, we used data from the UK Biobank to examine the pattern and direction of association between physical frailty and 325 health-related measures across multiple domains, using linear mixed-effect models and adjusting for numerous confounders. Participants were included if complete data were available for all five indicators of frailty, all covariates, and at least one health measure. We further examined the association between frailty and brain structure and the role of this association in mediating the relationship between frailty and health outcomes. FINDINGS: 483 033 participants aged 38-73 years were included in the study at baseline (between Dec 19, 2006, and Oct 1, 2010); at a median follow-up of 9 years (IQR 8-10), behavioural data were available for 46 501 participants and neuroimaging data for 40 210 participants. The severity of physical frailty was significantly associated with decreased cognitive performance (Cohen's d=0·025-0·162), increased early-life risks (d=0·026-0·111), unhealthy lifestyle (d=0·013-0·394), poor physical fitness (d=0·007-0·668), increased symptoms of poor mental health (d=0·032-0·607), severe environmental pollution (d=0·013-0·064), and adverse biochemical markers (d=0·025-0·198). Some associations were bidirectional, with the strongest effects on mental health measures. The severity of frailty correlated with increased total white matter hyperintensity and lower grey matter volume, particularly in subcortical regions (d=0·027-0·082), which significantly mediated the association between frailty and health-related outcomes, although the mediated effects were small. INTERPRETATION: Physical frailty is associated with diverse unfavourable health-related outcomes, which can be mediated by differences in brain structure. Our findings offer a framework for guiding preventative strategies targeting both frailty and psychiatric disorders. FUNDING: National Institute of Mental Health, National Science Foundation.


Subject(s)
Frailty , Middle Aged , Humans , Aged , Frailty/epidemiology , Biological Specimen Banks , Brain/diagnostic imaging , United Kingdom/epidemiology , Outcome Assessment, Health Care
10.
Psychiatry Res Neuroimaging ; 330: 111601, 2023 04.
Article in English | MEDLINE | ID: mdl-36724678

ABSTRACT

Recent evidence has shown that some brain regions are core hubs and play a key role in the treatment of depression. Twenty-five unmedicated patients with major depressive disorder (MDD) were included, and telephone follow-up was performed at 8, 24, and 48 weeks after enrollment. After reaching clinical remission, they were scheduled for a second magnetic resonance imaging scan and clinical evaluation. Thirty-one healthy controls were also investigated. The intrinsic functional connectivity (degree centrality) of each participant was mapped using a computationally efficient approach. Then, functional connectivity of patients was calculated between the identified regions of interest by degree centrality analysis and every voxel. Later, linear regression analysis was used to identify potential variables predictive of an improvement in disease severity. The prominent hubs identified by degree centrality analysis included the cerebellum, inferior temporal gyrus, lingual gyrus, dorsal medial prefrontal cortex (DMPFC), and dorsal lateral prefrontal cortex. We also found that the increased degree centrality of DMPFC was associated with improvement in depressive symptoms. The brain activity associated with antidepressant effects, especially brain connectivity changes in the left DMPFC, can potentially be used to monitor treatment response and predict treatment outcomes.


Subject(s)
Depressive Disorder, Major , Humans , Brain , Antidepressive Agents/therapeutic use , Prefrontal Cortex , Treatment Outcome , Magnetic Resonance Imaging/methods
11.
Schizophr Bull ; 49(1): 172-184, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36305162

ABSTRACT

Schizophrenia (SZ), schizoaffective disorder (SAD), and psychotic bipolar disorder share substantial overlap in clinical phenotypes, associated brain abnormalities and risk genes, making reliable diagnosis among the three illness challenging, especially in the absence of distinguishing biomarkers. This investigation aims to identify multimodal brain networks related to psychotic symptom, mood, and cognition through reference-guided fusion to discriminate among SZ, SAD, and BP. Psychotic symptom, mood, and cognition were used as references to supervise functional and structural magnetic resonance imaging (MRI) fusion to identify multimodal brain networks for SZ, SAD, and BP individually. These features were then used to assess the ability in discriminating among SZ, SAD, and BP. We observed shared links to functional and structural covariation in prefrontal, medial temporal, anterior cingulate, and insular cortices among SZ, SAD, and BP, although they were linked with different clinical domains. The salience (SAN), default mode (DMN), and fronto-limbic (FLN) networks were the three identified multimodal MRI features within the psychosis spectrum disorders from psychotic symptom, mood, and cognition associations. In addition, using these networks, we can classify patients and controls and distinguish among SZ, SAD, and BP, including their first-degree relatives. The identified multimodal SAN may be informative regarding neural mechanisms of comorbidity for psychosis spectrum disorders, along with DMN and FLN may serve as potential biomarkers in discriminating among SZ, SAD, and BP, which may help investigators better understand the underlying mechanisms of psychotic comorbidity from three different disorders via a multimodal neuroimaging perspective.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/pathology , Magnetic Resonance Imaging/methods , Cognition , Biomarkers
12.
Cardiovasc Res ; 119(6): 1427-1440, 2023 06 13.
Article in English | MEDLINE | ID: mdl-35875865

ABSTRACT

AIMS: Elevated blood pressure (BP) is a prevalent modifiable risk factor for cardiovascular diseases and contributes to cognitive decline in late life. Despite the fact that functional changes may precede irreversible structural damage and emerge in an ongoing manner, studies have been predominantly informed by brain structure and group-level inferences. Here, we aim to delineate neurobiological correlates of BP at an individual level using machine learning and functional connectivity. METHODS AND RESULTS: Based on whole-brain functional connectivity from the UK Biobank, we built a machine learning model to identify neural representations for individuals' past (∼8.9 years before scanning, N = 35 882), current (N = 31 367), and future (∼2.4 years follow-up, N = 3 138) BP levels within a repeated cross-validation framework. We examined the impact of multiple potential covariates, as well as assessed these models' generalizability across various contexts.The predictive models achieved significant correlations between predicted and actual systolic/diastolic BP and pulse pressure while controlling for multiple confounders. Predictions for participants not on antihypertensive medication were more accurate than for currently medicated patients. Moreover, the models demonstrated robust generalizability across contexts in terms of ethnicities, imaging centres, medication status, participant visits, gender, age, and body mass index. The identified connectivity patterns primarily involved the cerebellum, prefrontal, anterior insula, anterior cingulate cortex, supramarginal gyrus, and precuneus, which are key regions of the central autonomic network, and involved in cognition processing and susceptible to neurodegeneration in Alzheimer's disease. Results also showed more involvement of default mode and frontoparietal networks in predicting future BP levels and in medicated participants. CONCLUSION: This study, based on the largest neuroimaging sample currently available and using machine learning, identifies brain signatures underlying BP, providing evidence for meaningful BP-associated neural representations in connectivity profiles.


Subject(s)
Connectome , Humans , Blood Pressure , Biological Specimen Banks , Magnetic Resonance Imaging/methods , Brain , United Kingdom
13.
Hum Brain Mapp ; 44(1): 119-130, 2023 01.
Article in English | MEDLINE | ID: mdl-35993678

ABSTRACT

Concomitant neuropsychiatric symptoms (NPS) are associated with accelerated Alzheimer's disease (AD) progression. Identifying multimodal brain imaging patterns associated with NPS may help understand pathophysiology correlates AD. Based on the AD continuum, a supervised learning strategy was used to guide four-way multimodal neuroimaging fusion (Amyloid, Tau, gray matter volume, brain function) by using NPS total score as the reference. Loadings of the identified multimodal patterns were compared across the AD continuum. Then, regression analyses were performed to investigate its predictability of longitudinal cognition performance. Furthermore, the fusion analysis was repeated in the four NPS subsyndromes. Here, an NPS-associated pathological-structural-functional covaried pattern was observed in the frontal-subcortical limbic circuit, occipital, and sensor-motor region. Loading of this multimodal pattern showed a progressive increase with the development of AD. The pattern significantly correlates with multiple cognitive domains and could also predict longitudinal cognitive decline. Notably, repeated fusion analysis using subsyndromes as references identified similar patterns with some unique variations associated with different syndromes. Conclusively, NPS was associated with a multimodal imaging pattern involving complex neuropathologies, which could effectively predict longitudinal cognitive decline. These results highlight the possible neural substrate of NPS in AD, which may provide guidance for clinical management.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Brain , Gray Matter/pathology , Neuroimaging
14.
BMC Med ; 20(1): 477, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482369

ABSTRACT

BACKGROUND: Although electroconvulsive therapy (ECT) is an effective treatment for depression, ECT cognitive impairment remains a major concern. The neurobiological underpinnings and mechanisms underlying ECT antidepressant and cognitive impairment effects remain unknown. This investigation aims to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks and assesses whether they are associated with the ECT-induced electric field (E-field) with an optimal pulse amplitude estimation. METHODS: A single site clinical trial focused on amplitude (600, 700, and 800 mA) included longitudinal multimodal imaging and clinical and cognitive assessments completed before and immediately after the ECT series (n = 54) for late-life depression. Another two independent validation cohorts (n = 84, n = 260) were included. Symptom and cognition were used as references to supervise fMRI and sMRI fusion to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks. Correlations between ECT-induced E-field within these two networks and clinical and cognitive outcomes were calculated. An optimal pulse amplitude was estimated based on E-field within antidepressant-response and cognitive-impairment networks. RESULTS: Decreased function in the superior orbitofrontal cortex and caudate accompanied with increased volume in medial temporal cortex showed covarying functional and structural alterations in both antidepressant-response and cognitive-impairment networks. Volume increases in the hippocampal complex and thalamus were antidepressant-response specific, and functional decreases in the amygdala and hippocampal complex were cognitive-impairment specific, which were validated in two independent datasets. The E-field within these two networks showed an inverse relationship with HDRS reduction and cognitive impairment. The optimal E-filed range as [92.7-113.9] V/m was estimated to maximize antidepressant outcomes without compromising cognitive safety. CONCLUSIONS: The large degree of overlap between antidepressant-response and cognitive-impairment networks challenges parameter development focused on precise E-field dosing with new electrode placements. The determination of the optimal individualized ECT amplitude within the antidepressant and cognitive networks may improve the treatment benefit-risk ratio. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02999269.


Subject(s)
Cognitive Dysfunction , Depressive Disorder, Major , Electroconvulsive Therapy , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Neurobiology , Brain/diagnostic imaging , Cognitive Dysfunction/therapy
15.
BMC Med ; 20(1): 286, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36076200

ABSTRACT

BACKGROUND: Grip strength is a widely used and well-validated measure of overall health that is increasingly understood to index risk for psychiatric illness and neurodegeneration in older adults. However, existing work has not examined how grip strength relates to a comprehensive set of mental health outcomes, which can detect early signs of cognitive decline. Furthermore, whether brain structure mediates associations between grip strength and cognition remains unknown. METHODS: Based on cross-sectional and longitudinal data from over 40,000 participants in the UK Biobank, this study investigated the behavioral and neural correlates of handgrip strength using a linear mixed effect model and mediation analysis. RESULTS: In cross-sectional analysis, we found that greater grip strength was associated with better cognitive functioning, higher life satisfaction, greater subjective well-being, and reduced depression and anxiety symptoms while controlling for numerous demographic, anthropometric, and socioeconomic confounders. Further, grip strength of females showed stronger associations with most behavioral outcomes than males. In longitudinal analysis, baseline grip strength was related to cognitive performance at ~9 years follow-up, while the reverse effect was much weaker. Further, baseline neuroticism, health, and financial satisfaction were longitudinally associated with subsequent grip strength. The results revealed widespread associations between stronger grip strength and increased grey matter volume, especially in subcortical regions and temporal cortices. Moreover, grey matter volume of these regions also correlated with better mental health and considerably mediated their relationship with grip strength. CONCLUSIONS: Overall, using the largest population-scale neuroimaging dataset currently available, our findings provide the most well-powered characterization of interplay between grip strength, mental health, and brain structure, which may facilitate the discovery of possible interventions to mitigate cognitive decline during aging.


Subject(s)
Hand Strength , Mental Health , Aged , Biological Specimen Banks , Brain/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Male , United Kingdom/epidemiology
16.
Front Neurosci ; 16: 923065, 2022.
Article in English | MEDLINE | ID: mdl-35968362

ABSTRACT

Cigarette smoking and smoking cessation are associated with changes in cognition and DNA methylation; however, the neurobiological correlates of these effects have not been fully elucidated, especially in long-term cessation. Cognitive performance, percent methylation of the aryl hydrocarbon receptor repressor (AHRR) gene, and abstinence duration were used as references to supervise a multimodal fusion analysis of functional, structural, and diffusion magnetic resonance imaging (MRI) data, in order to identify associated brain networks in smokers and ex-smokers. Correlations among these networks and with smoking-related measures were performed. Cognition-, methylation-, and abstinence duration-associated networks discriminated between smokers and ex-smokers and correlated with differences in fractional amplitude of low frequency fluctuations (fALFF) values, gray matter volume (GMV), and fractional anisotropy (FA) values. Long-term smoking cessation was associated with more accurate cognitive performance, as well as lower fALFF and more GMV in the hippocampus complex. The methylation- and abstinence duration-associated networks positively correlated with smoking-related measures of abstinence duration and percent methylation, respectively, suggesting they are complementary measures. This analysis revealed structural and functional co-alterations linked to smoking abstinence and cognitive performance in brain regions including the insula, frontal gyri, and lingual gyri. Furthermore, AHRR methylation, a promising epigenetic biomarker of smoking recency, may provide an important complement to self-reported abstinence duration.

17.
Neurobiol Dis ; 173: 105838, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35985556

ABSTRACT

Transgenic animal models with homologous etiology provide a promising way to pursue the neurobiological substrates of the behavioral deficits in autism spectrum disorder (ASD). Gain-of-function mutations of MECP2 cause MECP2 duplication syndrome, a severe neurological disorder with core symptoms of ASD. However, abnormal brain developments underlying the autistic-like behavioral deficits of MECP2 duplication syndrome are rarely investigated. To this end, a human MECP2 duplication (MECP2-DP) rat model was created by the bacterial artificial chromosome transgenic method. Functional and structural magnetic resonance imaging (MRI) with high-field were performed on 16 male MECP2-DP rats and 15 male wildtype rats at postnatal 28 days, 42 days, and 56 days old. Multimodal fusion analyses guided by locomotor-relevant metrics and social novelty time separately were applied to identify abnormal brain networks associated with diverse behavioral deficits induced by MECP2 duplication. Aberrant functional developments of a core network primarily composed of the dorsal medial prefrontal cortex (dmPFC) and retrosplenial cortex (RSP) were detected to associate with diverse behavioral phenotypes in MECP2-DP rats. Altered developments of gray matter volume were detected in the hippocampus and thalamus. We conclude that gain-of-function mutations of MECP2 induce aberrant functional activities in the default-mode-like network and aberrant volumetric changes in the brain, resulting in autistic-like behavioral deficits. Our results gain critical insights into the biomarker of MECP2 duplication syndrome and the neurobiological underpinnings of the behavioral deficits in ASD.


Subject(s)
Autism Spectrum Disorder , Mental Retardation, X-Linked , Animals , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Brain/metabolism , Brain Mapping/methods , Humans , Male , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Rats
18.
Nat Commun ; 13(1): 4929, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35995794

ABSTRACT

Schizophrenia is a highly heritable psychiatric disorder characterized by widespread functional and structural brain abnormalities. However, previous association studies between MRI and polygenic risk were mostly ROI-based single modality analyses, rather than identifying brain-based multimodal predictive biomarkers. Based on schizophrenia polygenic risk scores (PRS) from healthy white people within the UK Biobank dataset (N = 22,459), we discovered a robust PRS-associated brain pattern with smaller gray matter volume and decreased functional activation in frontotemporal cortex, which distinguished schizophrenia from controls with >83% accuracy, and predicted cognition and symptoms across 4 independent schizophrenia cohorts. Further multi-disease comparisons demonstrated that these identified frontotemporal alterations were most severe in schizophrenia and schizo-affective patients, milder in bipolar disorder, and indistinguishable from controls in autism, depression and attention-deficit hyperactivity disorder. These findings indicate the potential of the identified PRS-associated multimodal frontotemporal network to serve as a trans-diagnostic gene intermediated brain biomarker specific to schizophrenia.


Subject(s)
Bipolar Disorder , Schizophrenia , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Brain , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Multifactorial Inheritance/genetics , Schizophrenia/diagnostic imaging , Schizophrenia/genetics
19.
Adv Sci (Weinh) ; 9(24): e2201621, 2022 08.
Article in English | MEDLINE | ID: mdl-35811304

ABSTRACT

Cognitive decline is amongst one of the most commonly reported complaints during normal aging. Despite evidence that age and cognition are linked with similar neural correlates, no previous studies have directly ascertained how these two constructs overlap in the brain in terms of neuroimaging-based prediction. Based on a long lifespan healthy cohort (CamCAN, aged 19-89 years, n = 567), it is shown that both cognitive function (domains spanning executive function, emotion processing, motor function, and memory) and human age can be reliably predicted from unique patterns of functional connectivity, with models generalizable in two external datasets (n = 533 and n = 453). Results show that cognitive decline and normal aging both manifest decrease within-network connections (especially default mode and ventral attention networks) and increase between-network connections (somatomotor network). Whereas dorsal attention network is an exception, which is highly predictive on cognitive ability but is weakly correlated with aging. Further, the positively weighted connections in predicting fluid intelligence significantly mediate its association with age. Together, these findings offer insights into why normal aging is often associated with cognitive decline in terms of brain network organization, indicating a process of neural dedifferentiation and compensational theory.


Subject(s)
Cognitive Aging , Aging/psychology , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuroimaging
20.
Neuroimage Clin ; 34: 103023, 2022.
Article in English | MEDLINE | ID: mdl-35489193

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is a rare genetic neurodegenerative disease. The neurobiological basis of SCA3 is still poorly understood, and up until now resting-state fMRI (rs-fMRI) has not been used to study this disease. In the current study we investigated (multi-echo) rs-fMRI data from patients with genetically confirmed SCA3 (n = 17) and matched healthy subjects (n = 16). Using independent component analysis (ICA) and subsequent regression with bootstrap resampling, we identified a pattern of differences between patients and healthy subjects, which we coined the fMRI SCA3 related pattern (fSCA3-RP) comprising cerebellum, anterior striatum and various cortical regions. Individual fSCA3-RP scores were highly correlated with a previously published 18F-FDG PET pattern found in the same sample (rho = 0.78, P = 0.0003). Also, a high correlation was found with the Scale for Assessment and Rating of Ataxia scores (r = 0.63, P = 0.007). No correlations were found with neuropsychological test scores, nor with levels of grey matter atrophy. Compared with the 18F-FDG PET pattern, the fSCA3-RP included a more extensive contribution of the mediofrontal cortex, putatively representing changes in default network activity. This rs-fMRI identification of additional regions is proposed to reflect a consequence of the nature of the BOLD technique, enabling measurement of dynamic network activity, compared to the more static 18F-FDG PET methodology. Altogether, our findings shed new light on the neural substrate of SCA3, and encourage further validation of the fSCA3-RP to assess its potential contribution as imaging biomarker for future research and clinical use.


Subject(s)
Machado-Joseph Disease , Neurodegenerative Diseases , Fluorodeoxyglucose F18 , Humans , Machado-Joseph Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...