Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Publication year range
1.
PLoS One ; 11(3): e0149569, 2016.
Article in English | MEDLINE | ID: mdl-26930597

ABSTRACT

The efficacy of an inactivated foot-and-mouth disease (FMD) vaccine is mainly dependent on the integrity of the foot-and-mouth disease virus (FMDV) particles. At present, the standard method to quantify the active component, the 146S antigen, of FMD vaccines is sucrose density gradient (SDG) analysis. However, this method is highly operator dependent and difficult to automate. In contrast, the enzyme-linked immunosorbent assay (ELISA) is a time-saving technique that provides greater simplicity and sensitivity. To establish a valid method to detect and quantify the 146S antigen of a serotype O FMD vaccine, a double-antibody sandwich (DAS) ELISA was compared with an SDG analysis. The DAS ELISA was highly correlated with the SDG method (R2 = 0.9215, P<0.01). In contrast to the SDG method, the DAS ELISA was rapid, robust, repeatable and highly sensitive, with a minimum quantification limit of 0.06 µg/mL. This method can be used to determine the effective antigen yields in inactivated vaccines and thus represents an alternative for assessing the potency of FMD vaccines in vitro. But it still needs to be prospectively validated by analyzing a new vaccine preparation and determining the proper protective dose followed by an in vivo vaccination-challenge study to confirm the ELISA findings.


Subject(s)
Antigens, Viral/analysis , Enzyme-Linked Immunosorbent Assay/methods , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/virology , Viral Vaccines/analysis , Animals , Antigens, Viral/immunology , Foot-and-Mouth Disease/immunology , Limit of Detection , Vaccines, Inactivated/analysis , Vaccines, Inactivated/immunology , Viral Vaccines/immunology
2.
Sheng Wu Gong Cheng Xue Bao ; 19(3): 376-9, 2003 May.
Article in Chinese | MEDLINE | ID: mdl-15969026

ABSTRACT

In order to obtain the gene P12X3C of Foot-and-Mouth Disease Virus (FMDV) that includes full length P1, 2A, 3C and a part of 2B, the site mutation strategy was used. After being digested by Kpn I and Xba I respectively, the gene P12X3C was cloned into the pcDNA3.1 (+) expression vector. The recombinant plasmid was checked by restriction enzyme analysis and nucleic acid sequencing, and then named pcDNA3.1/P12X3C. Further, BHK-21 cells was transfected with pcDNA3.1/P12X3C by using lipoid. The proteins of Foot-and-Mouth Disease Virus, which were expressed in BHK-21 cells, were confirmed by sandwich-ELISA and fluoroscopy. The result shows the gene P12X3C is cloned into eukaryotic expression plasmid, and the recombinant eukaryotic expression plasmid pcDNA3.1/P12X3C could express proteins of Foot-and-Mouth Disease Virus in BHK-21 cells, which have immunocompetence. This study demonstrates that delivery of a recombinant eukaryotic expression plasmid containing P12X3C coding regions results in the assembly of FMDV capsid structures, which will offer experimental base to DNA vaccine of FMDV.


Subject(s)
Foot-and-Mouth Disease Virus/genetics , Viral Proteins/metabolism , Animals , Cell Line , Cricetinae , Enzyme-Linked Immunosorbent Assay , Fluoroscopy , Genetic Vectors/genetics , Models, Genetic , Plasmids/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL