Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Exp Toxicol ; 42: 9603271221149656, 2023.
Article in English | MEDLINE | ID: mdl-36607285

ABSTRACT

BACKGROUND: Hyperglycemia is closely related to adverse pregnancy outcomes including pre-eclampsia (PE), a life-threatening complication with a substantial morbidity and mortality. However, the pathogenesis of abnormal placentation in gestational diabetes mellitus (GDM)-associated PE remains elusive. METHOD: Here we isolated exosomes from the human umbilical vein endothelial cells (HUVECs) treated with normal level of glucose (NG) and high levels of glucose (HG). The exosomes were added to HTR-8a/SVneo cells, a trophoblast cell line. High-throughput RNA-sequencing was performed to analyzed the changed RNAs in the exosomes and exosome-treated HTR-8a/SVneo cells. HTR-8a/SVneo cell phenotypes were evaluated from the aspects of cell proliferation, cell invasion and DNA damage. RESULTS: After treatment with HG, the changed RNAs in exosomes was enriched in RNA stabilization and oxidative stress. The altered RNAs in the HTR-8a/SVneo cells treated with exosomes from HG-induced HUVECs were enriched in pathways related to cell adhesion, migration, DNA damage response and angiogenesis. The HG-induced exosomes impaired the proliferation and invasion of HTR-8a cells and caused the DNA damage. HG up-regulated PUM2 in the exosomes and exosome-treated HTR-8a/SVneo cells. PUM2 interacted with SOX2 mRNA, resulting in the mRNA degradation. Overexpression of SOX2 prevented the damage to HTR-8a/SVneo cells caused by the exosomes from HG-induced HUVECs. CONCLUSIONS: We demonstrate that high glucose-induced endothelial exosomes mediate abnormal phenotypes of trophoblasts through PUM2-mediated repression of SOX2. Our results reveal a novel regulatory mechanism of hyperglycemia in development of abnormal placentation and provide potential targets for preventing adverse pregnancy outcomes.


Subject(s)
Exosomes , Hyperglycemia , Pre-Eclampsia , Pregnancy , Female , Humans , Placentation , Trophoblasts , Exosomes/metabolism , Hyperglycemia/complications , Hyperglycemia/metabolism , Hyperglycemia/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Pre-Eclampsia/genetics , Glucose/pharmacology , RNA/metabolism , Cell Movement , Cell Proliferation , RNA-Binding Proteins/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
2.
Int J Biochem Cell Biol ; 152: 106296, 2022 11.
Article in English | MEDLINE | ID: mdl-36113831

ABSTRACT

BACKGROUND: m6A-RNA modification mediated by the N6-methyladenosine RNA methylation-related molecule methyltransferase-like 3 has been implicated in the progression of endometriosis. However, the functions of other m6A regulators, especially in ovarian endometriosis, remain unknown. METHODS: Three datasets (GSE7305, GSE7307, and GSE37837) with diagnosed ovarian endometriosis were extracted from the Gene Expression Omnibus database. Using bioinformatics methods such as Weighted Gene Co-expression Network Analysis, Gene Ontology analysis, protein-protein interaction, and correlation, hub genes were identified. Using dot blot and N6-methyladenosine-IP-qPCR, the total and individual N6-methyladenosine gene levels were quantified. On clinical ovarian ectopic and eutopic endometrium tissues, N6-methyladenosine RNA methylation sequencing was performed. To authenticate protein localization and expression level, immunohistochemical staining and western blot were conducted, respectively. The database Connectivity Map was used to predict small molecules with potential therapeutic effects. RESULTS: In ovarian endometriosis, the N6-methyladenosine "reader" molecule IGF2BP2 and related target genes MEIS2 and GATA6 were highly expressed. IGF2BP2 promoted the proliferation, migration, and invasion of ectopic endometrial stromal cells by stabilizing the mRNA of MEIS2 and GATA6. Synergistically, METTL3 and IGF2BP2 increased the N6-methyladenosine methylation of MEIS2 and GATA6. We developed five molecules (Mercaptopurine, MK-886, CP-863187, Canadine, and Securinine) that could be used to treat ovarian endometriosis based on IGF2BP2. CONCLUSION: Our findings provided additional support for a systematized understanding of the role of N6-methyladenosine RNA methylation in endometriosis and confirmed for the first time the mechanism of IGF2BP2 in promoting ovarian endometriosis. This provides the molecular foundation for potential future therapies for ovarian endometriosis. DATA AVAILABILITY: The data used to support the findings of this study are available from the corresponding author upon request.


Subject(s)
Endometriosis , Ovarian Diseases , Female , Humans , Adenosine , Blotting, Western , Endometriosis/genetics , Endometriosis/metabolism , GATA6 Transcription Factor , Homeodomain Proteins , Methyltransferases/genetics , Ovary/metabolism , RNA , RNA-Binding Proteins/genetics , Transcription Factors , Ovarian Diseases/genetics , Ovarian Diseases/metabolism , Disease Progression
3.
Biosci Rep ; 40(6)2020 06 26.
Article in English | MEDLINE | ID: mdl-32510146

ABSTRACT

Serous ovarian cancer is one of the most fatal gynecological tumors with an extremely low 5-year survival rate. Most patients are diagnosed at an advanced stage with wide metastasis. The dysregulation of genes serves an important role in the metastasis progression of ovarian cancer. Differentially expressed genes (DEGs) between primary tumors and metastases of serous ovarian cancer were screened out in the gene expression profile of GSE73168 from Gene Expression Omnibus (GEO). Cytoscape plugin cytoHubba and weighted gene co-expression network analysis (WGCNA) were utilized to select hub genes. Univariate and multivariate Cox regression analyses were used to screen out prognosis-associated genes. Furthermore, the Oncomine validation, prognostic analysis, methylation mechanism, gene set enrichment analysis (GSEA), TIMER database analysis and administration of candidate molecular drugs were conducted for hub genes. Nine hundred and fifty-seven DEGs were identified in the gene expression profile of GSE73168. After using Cytoscape plugin cytoHubba, 83 genes were verified. In co-expression network, the blue module was most closely related to tumor metastasis. Furthermore, the genes in Cytoscape were analyzed, showing that the blue module and screened 17 genes were closely associated with tumor metastasis. Univariate and multivariate Cox regression revealed that the age, stage and STMN2 were independent prognostic factors. The Cancer Genome Atlas (TCGA) suggested that the up-regulated expression of STMN2 was related to poor prognosis of ovarian cancer. Thus, STMN2 was considered as a new key gene after expression validation, survival analysis and TIMER database validation. GSEA confirmed that STMN2 was probably involved in ECM receptor interaction, focal adhesion, TGF beta signaling pathway and MAPK signaling pathway. Furthermore, three candidate small molecule drugs for tumor metastasis (diprophylline, valinomycin and anisomycin) were screened out. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot showed that STMN2 was highly expressed in ovarian cancer tissue and ovarian cancer cell lines. Further studies are needed to investigate these prognosis-associated genes for new therapy target.


Subject(s)
Biomarkers, Tumor/genetics , Cell Movement/genetics , Neoplasms, Cystic, Mucinous, and Serous/genetics , Ovarian Neoplasms/genetics , Stathmin/genetics , Age Factors , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Databases, Genetic , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Neoplasm Invasiveness , Neoplasm Staging , Neoplasms, Cystic, Mucinous, and Serous/metabolism , Neoplasms, Cystic, Mucinous, and Serous/secondary , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protein Interaction Maps , Signal Transduction , Stathmin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...