Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38399457

ABSTRACT

Black Phosphorus (BP) is a new semiconductor material with excellent biocompatibility, degradability, and optical and electrophysical properties. A growing number of studies show that BP has high potential applications in the biomedical field. This article aims to systematically review the research progress of BP composite medical materials in the field of tissue engineering, mining BP in bone regeneration, skin repair, nerve repair, inflammation, treatment methods, and the application mechanism. Furthermore, the paper discusses the shortcomings and future recommendations related to the development of BP. These shortcomings include stability, photothermal conversion capacity, preparation process, and other related issues. However, despite these challenges, the utilization of BP-based medical materials holds immense promise in revolutionizing the field of tissue repair.

2.
J Magn Reson Imaging ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37819191

ABSTRACT

BACKGROUND: Exercise-induced cardiac remodeling (CR) and myocardial fibrosis (MF) can increase cardiovascular risk in athletes. Early detection of pulmonary arterial hemodynamics parameters among athletes may be beneficial in optimizing the frequency of clinical follow-ups. PURPOSE: To analyze the hemodynamics of pulmonary arteries and its relationship with CR and MF in athletes using four-dimensional (4D) flow MRI. STUDY TYPE: Prospective. POPULATION: One hundred twenty-one athletes (median age, 24 years; mean exercise per week 10 hours, for mean of 5 years) and twenty-one sedentary healthy controls (median age, 25 years; exercise per week <3 hours, irregular pattern). FIELD STRENGTH/SEQUENCE: True fast imaging with steady state free precession, time-resolved 3D Cartesian phase-contrast, and phase sensitive inversion recovery late gadolinium enhancement sequences at 3.0 T. ASSESSMENT: CR was defined as any cardiac parameters exceeding the 99th percentile upper reference limits, encompassing ventricular function, bi-atrium and bi-ventricle diameters, and ventricular wall thickness. MF was visually evaluated by three independent radiologists. 4D flow parameters were assessed in the main, right, and left pulmonary arteries (MPA, RPA, and LPA, respectively) and compared between different groups. Four machine learning (ML) models were developed to differentiate between athletes with and without CR and/or MF. STATISTICAL TESTS: Univariate analysis was used to compare groups. Area under the receiver operating characteristic curve (AUC) was used to assess the performance of the ML models. RESULTS: Athletes had significantly higher WSSmax in the MPA, RPA, and LPA than controls. Athletes with CR and/or MF (N = 30) had significantly lower RPmax from MPA to RPA than those without (N = 91). Among the ML models, the gradient boosting machine model had the highest performance, with an AUC of 0.90. CONCLUSION: The pulmonary arterial hemodynamics parameters could differentiate CR and/or MF in athletes, which may be potential to assist in optimizing frequency of follow-up. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

3.
Article in English | MEDLINE | ID: mdl-35911158

ABSTRACT

Objective: Forsythia suspensa leaf (FSL) has been used as a health tea in China for centuries. Previous experiments have proved that FSL extract has a good effect on the antirespiratory syncytial virus (RSV) in vitro, but its exact mechanism is not clear. Therefore, this study aims to determine the active components and targets of FSL and further explore its anti-RSV mechanism. Methods: UPLC-Q-Exactive-MS was used to analyze the main chemical components of FSL. The compound disease target network, PPI, GO, and KEGG were used to obtain key targets and potential ways. Then, the molecular docking was verified by Schrödinger Maestro software. Next, the cell model of RSV infection was established, and the inhibitory effect of each drug on RSV was detected. Finally, western blotting was used to detect the effect of the active components of FSL on the expression of PI3K/AKT signaling pathway-related protein. Results: UPLC-Q-Exactive-MS analysis showed that there were 67 main chemical constituents in FSL, while network pharmacological analysis showed that there were 169 anti-RSV targets of the active components in FSL, involving 177 signal pathways, among which PI3K/AKT signal pathway played an important role in the anti-RSV process of FSL. The results of molecular docking showed that cryptochlorogenic acid, phillyrin, phillygenin, rutin, and rosmarinic acid had higher binding activities to TP53, STAT3, MAPK1, AKT1, and MAPK3, respectively. In vitro experiments showed that phillyrin and rosmarinic acid could effectively improve the survival rate of RSV-infected cells, increase the expression level of PI3K, and decrease the expression level of AKT. Conclusion: The active ingredients of FSL, phillyrin, and rosmarinic acid can play an anti-RSV role by inhibiting PI3K/AKT signaling pathway. This study provides reliable theoretical and experimental support for the anti-RSV treatment of FSL.

4.
Chem Sci ; 12(27): 9556-9560, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34349930

ABSTRACT

A novel arylation of sulfonamides with boronic acids to afford numerous diaryl sulfones via a visible light-mediated N-S bond cleavage other than the typical transition-metal-catalyzed C(O)-N bond activation is described. This methodology, which represents the first catalyst-free protocol for the sulfonylation of boronic acids, is characterized by its simple reaction conditions, good functional group tolerance and high efficiency. Several successful examples for the late-stage functionalization of diverse sulfonamides indicate the high potential utility of this method in pharmaceutical science and organic synthesis.

5.
Org Lett ; 23(15): 5988-5992, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34240873

ABSTRACT

This work describes a base-mediated borylsilylation of benzylic ammonium salts to synthesize geminal silylboronates bearing benzylic proton under mild reaction conditions. Deaminative silylation of aryl ammonium salts was also achieved in the presence of LiOtBu. This strategy which is featured with high efficiency, mild reaction conditions, and good functional group tolerance provides efficient routes for late-stage functionalization of amines.

SELECTION OF CITATIONS
SEARCH DETAIL
...