Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
New Phytol ; 242(3): 1113-1130, 2024 May.
Article in English | MEDLINE | ID: mdl-38418427

ABSTRACT

Leaf development is a multifaceted and dynamic process orchestrated by a myriad of genes to shape the proper size and morphology. The dynamic genetic network underlying leaf development remains largely unknown. Utilizing a synergistic genetic approach encompassing dynamic genome-wide association study (GWAS), time-ordered gene co-expression network (TO-GCN) analyses and gene manipulation, we explored the temporal genetic architecture and regulatory network governing leaf development in Populus. We identified 42 time-specific and 18 consecutive genes that displayed different patterns of expression at various time points. We then constructed eight TO-GCNs that covered the cell proliferation, transition, and cell expansion stages of leaf development. Integrating GWAS and TO-GCN, we postulated the functions of 27 causative genes for GWAS and identified PtoGRF9 as a key player in leaf development. Genetic manipulation via overexpression and suppression of PtoGRF9 revealed its primary influence on leaf development by modulating cell proliferation. Furthermore, we elucidated that PtoGRF9 governs leaf development by activating PtoHB21 during the cell proliferation stage and attenuating PtoLD during the transition stage. Our study provides insights into the dynamic genetic underpinnings of leaf development and understanding the regulatory mechanism of PtoGRF9 in this dynamic process.


Subject(s)
Genome-Wide Association Study , Populus , Plant Leaves/anatomy & histology , Gene Regulatory Networks , Gene Expression Regulation, Plant
2.
Plant Biotechnol J ; 22(4): 970-986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37988335

ABSTRACT

Wood formation, intricately linked to the carbohydrate metabolism pathway, underpins the capacity of trees to produce renewable resources and offer vital ecosystem services. Despite their importance, the genetic regulatory mechanisms governing wood fibre properties in woody plants remain enigmatic. In this study, we identified a pivotal module comprising 158 high-priority core genes implicated in wood formation, drawing upon tissue-specific gene expression profiles from 22 Populus samples. Initially, we conducted a module-based association study in a natural population of 435 Populus tomentosa, pinpointing PtoDPb1 as the key gene contributing to wood formation through the carbohydrate metabolic pathway. Overexpressing PtoDPb1 led to a 52.91% surge in cellulose content, a reduction of 14.34% in fibre length, and an increment of 38.21% in fibre width in transgenic poplar. Moreover, by integrating co-expression patterns, RNA-sequencing analysis, and expression quantitative trait nucleotide (eQTN) mapping, we identified a PtoDPb1-mediated genetic module of PtoWAK106-PtoDPb1-PtoE2Fa-PtoUGT74E2 responsible for fibre properties in Populus. Additionally, we discovered the two PtoDPb1 haplotypes that influenced protein interaction efficiency between PtoE2Fa-PtoDPb1 and PtoDPb1-PtoWAK106, respectively. The transcriptional activation activity of the PtoE2Fa-PtoDPb1 haplotype-1 complex on the promoter of PtoUGT74E2 surpassed that of the PtoE2Fa-PtoDPb1 haplotype-2 complex. Taken together, our findings provide novel insights into the regulatory mechanisms of fibre properties in Populus, orchestrated by PtoDPb1, and offer a practical module for expediting genetic breeding in woody plants via molecular design.


Subject(s)
Populus , Populus/genetics , Populus/metabolism , Linkage Disequilibrium , Ecosystem , Plant Breeding , Cellulose/metabolism , Wood/genetics , Gene Expression Regulation, Plant/genetics
3.
Plant Physiol ; 193(1): 736-755, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37247391

ABSTRACT

Drought stress limits woody species productivity and influences tree distribution. However, dissecting the molecular mechanisms that underpin drought responses in forest trees can be challenging due to trait complexity. Here, using a panel of 300 Chinese white poplar (Populus tomentosa) accessions collected from different geographical climatic regions in China, we performed a genome-wide association study (GWAS) on seven drought-related traits and identified PtoWRKY68 as a candidate gene involved in the response to drought stress. A 12-bp insertion and/or deletion and three nonsynonymous variants in the PtoWRKY68 coding sequence categorized natural populations of P. tomentosa into two haplotype groups, PtoWRKY68hap1 and PtoWRKY68hap2. The allelic variation in these two PtoWRKY68 haplotypes conferred differential transcriptional regulatory activities and binding to the promoters of downstream abscisic acid (ABA) efflux and signaling genes. Overexpression of PtoWRKY68hap1 and PtoWRKY68hap2 in Arabidopsis (Arabidopsis thaliana) ameliorated the drought tolerance of two transgenic lines and increased ABA content by 42.7% and 14.3% compared to wild-type plants, respectively. Notably, PtoWRKY68hap1 (associated with drought tolerance) is ubiquitous in accessions in water-deficient environments, whereas the drought-sensitive allele PtoWRKY68hap2 is widely distributed in well-watered regions, consistent with the trends in local precipitation, suggesting that these alleles correspond to geographical adaptation in Populus. Moreover, quantitative trait loci analysis and an electrophoretic mobility shift assay showed that SHORT VEGETATIVE PHASE (PtoSVP.3) positively regulates the expression of PtoWRKY68 under drought stress. We propose a drought tolerance regulatory module in which PtoWRKY68 modulates ABA signaling and accumulation, providing insight into the genetic basis of drought tolerance in trees. Our findings will facilitate molecular breeding to improve the drought tolerance of forest trees.


Subject(s)
Arabidopsis , Populus , Drought Resistance , Transcription Factors/genetics , Transcription Factors/metabolism , Populus/metabolism , Alleles , Genome-Wide Association Study , Gene Expression Regulation, Plant , Arabidopsis/metabolism , Droughts , Abscisic Acid/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics
4.
Zhong Yao Cai ; 36(10): 1594-8, 2013 Oct.
Article in Chinese | MEDLINE | ID: mdl-24761667

ABSTRACT

OBJECTIVE: To study the feasibility and significance of the method to identify medicinal plants through the observation and statistics of 9 species of Sabia medical plants from Guizhou province. METHODS: Leaf epidermis characteristics were observed, measured by optical microscope and analyzed by SPSS 17.0 software. RESULTS: All of these plants had some differences in indumentum, cell morphology and size, and had significant difference in the length and circumference of lower epidermis cells. CONCLUSION: The method combining microscopic observation with statistics can be used as the classification and identification basis of medicinal plants and materials of Sabia genus.


Subject(s)
Magnoliopsida/classification , Magnoliopsida/ultrastructure , Plant Epidermis/ultrastructure , Plant Leaves/ultrastructure , Plants, Medicinal/ultrastructure , China , Magnoliopsida/anatomy & histology , Magnoliopsida/cytology , Microscopy, Electron, Scanning , Plant Epidermis/cytology , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Plants, Medicinal/anatomy & histology , Plants, Medicinal/cytology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...