Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Publication year range
1.
Front Microbiol ; 14: 1136187, 2023.
Article in English | MEDLINE | ID: mdl-36910214

ABSTRACT

Introduction: The functions of terrestrial ecosystems are mainly maintained by bacteria, as a key component of microorganisms, which actively participate in the nutrient cycling of ecosystems. Currently, there are few studies have been carried out on the bacteria contributing to the soil multi-nutrient cycling in responding to climate warming, which hampers our obtainment of a comprehensive understanding of the ecological function of ecosystems as a whole. Methods: In this study, the main bacteria taxa contributing to the soil multi-nutrient cycling under the long-term warming in an alpine meadow was determined based onphysichemical properties measurement and high-throughput sequencing, and the potential reasons that warming altered the main bacteria contributing to the soil multi-nutrient cycling were further analyzed. Results: The results confirmed that the bacterial ß-diversity was crucial to the soil multi-nutrient cycling. Furthermore, Gemmatimonadetes, Actinobacteria, and Proteobacteria were the main contributors to the soil multi-nutrient cycling, and played pivotal roles as keystone nodes and biomarkers throughout the entire soil profile. This suggested that warming altered and shifted the main bacteria contributing to the soil multi-nutrient cycling toward keystone taxa. Discussion: Meanwhile, their relative abundance was higher, which could make them have the advantage of seizing resources in the face of environmental pressures. In summary, the results demonstrated the crucial role of keystone bacteria in the multi-nutrient cycling under the climate warming in the alpine meadow. This has important implications for understanding and exploring the multi-nutrient cycling of alpine ecosystems under the global climate warming.

2.
Front Microbiol ; 14: 1120151, 2023.
Article in English | MEDLINE | ID: mdl-36970702

ABSTRACT

Introduction: Bacteria are an essential component of glacier-fed ecosystems and play a dominant role in driving elemental cycling in the hydrosphere and pedosphere. However, studies of bacterial community composition mechanisms and their potential ecological functions from the alluvial valley of mountain glaciers are extremely scarce under cold and arid environments. Methods: Here, we analyzed the effects of major physicochemical parameters related to soil on the bacterial community compositions in an alluvial valley of the Laohugou Glacier No. 12 from the perspective of core, other, and unique taxa and explored their functional composition characteristics. Results and discussion: The different characteristics of core, other, and unique taxa highlighted the conservation and difference in bacterial community composition. The bacterial community structure of the glacial alluvial valley was mainly affected by the above sea level, soil organic carbon, and water holding capacity. In addition, the most common and active carbon metabolic pathways and their spatial distribution patterns along the glacial alluvial valley were revealed by FAPTOTAX. Collectively, this study provides new insights into the comprehensive assessment of glacier-fed ecosystems in glacial meltwater ceasing or glacier disappearance.

3.
Front Plant Sci ; 13: 848691, 2022.
Article in English | MEDLINE | ID: mdl-35401610

ABSTRACT

Alpine ecosystem stability and biodiversity of the Tibetan plateau are facing threat from dry valley vegetation uplift expansion, a process which is highly connected to variations in the soil microbial community and soil nutrients. However, the variation of microbial community properties and their relationship to soil nutrients have scarcely been explored in Tibetan dry valleys, which is a gap that hampers understanding the dry valley ecosystem's response to vegetation change. In this study, we sampled grasslands (G), a grass-shrub transition area (T), and shrublands (S) along an uplift expansion gradient and investigated the link between microbial community properties and soil nutrients. The results showed that shrub degradation by grass expansion in Tibetan dry valley was accompanied by increasing relative phosphorus (P) limitation, which was the main driver for bacterial and fungal composition variation as it offered highest total effect on PC1 (0.38 and 0.63, respectively). Total phosphorus (TP) was in the center module of bacterial and fungal network under shrub soil and even acted as key nodes in fungal networks. During the replacement by grass, TP was gradually marginalized from both bacterial and fungal center network module and finally disappeared in networks, with ammonia and nitrate gradually appearing in the bacterial network. However, TC and total nitrogen (TN) were always present in the center modules of both fungal and bacterial network. These support that a TP variation-induced compositional and network functional shift in the microbial community was a potential reason for vegetation uplift expansion in Tibetan dry valley. This study highlighted the effect of TP on microbial community properties during dry valley vegetation uplift expansion and offered basic information on Tibetan alpine dry valley ecosystem's response to climate change.

4.
Front Plant Sci ; 9: 1312, 2018.
Article in English | MEDLINE | ID: mdl-30405643

ABSTRACT

The gibberellin-responsive dwarfing gene Rht12 can significantly reduce plant height without changing seedling vigor and substantially increase ear fertility in bread wheat (Triticum aestivum. L). However, Rht12 delays heading date and anthesis date, hindering the use of Rht12 in wheat improvement. To promote early flowering of the Rht12 dwarf plants, the photoperiod-insensitive allele Ppd-D1a was introduced through a cross between Jinmai47 (Ppd-D1a) and Karcagi (Rht12). The results showed that Ppd-D1a can rescue the delaying effect of Rht12 on flowering time and promote earlier flowering by 9.0 days (163.2°Cd) in the Rht12 dwarf plants by shortening the late reproduction phase. Plant height was reduced by Rht12 (43.2%) and Ppd-D1a (10.9%), achieving dwarf plants with higher lodging resistance. Ear fertility, like the grain number per spike, was significantly increased by Rht12 (21.3%), while it was reduced by Ppd-D1a (6.5%). However, thousand kernel weight was significantly reduced by Rht12 (12.9%) but significantly increased by Ppd-D1a (16.9%). Finally, plant yield was increased by 16.4 and 8.2%, and harvest index was increased by 24.9 and 15.4% in the Rht12 dwarf lines and tall lines with Ppd-D1a, respectively. Clearly, there was an additive interaction between Rht12 and Ppd-D1 and the introduction of Ppd-D1a advanced the flowering time and improved the yield traits of Rht12 dwarf plants, suggesting that the combination of Rht12 and Ppd-D1a would be conducive to the successful use of Rht12 in wheat breeding programs.

5.
Huan Jing Ke Xue ; 39(5): 2339-2350, 2018 May 08.
Article in Chinese | MEDLINE | ID: mdl-29965535

ABSTRACT

Apples (Malus demestica) in the Loess Plateau region are grown in the largest apple orchards in the world and China, playing an important role in the improvement of the ecological environment. However, there is little research on the scale of the ecological system of the apple orchard in the Loess Plateau region. In this study, the CO2 flux of a mature apple orchard in the Loess Plateau region was observed using an eddy covariance technique in the Shannxi Province. Based on the observation data sets observed from January 2016 to December 2016, a quantitative analysis of the apple orchard net ecosystem exchange (NEE), ecosystem respiration (Reco), total ecosystem primary productivity (GPP) changes at different time scales, changes in main meteorological factors, the effects of soil temperature (Ts) and air temperature (Ta) at different levels, and PAR on NEE were discussed. The results showed that during the study period, the apple orchard ecosystem NEE monthly totals were positive (as a carbon source) in the non-growing season in December, January, February and March, were negative (a carbon sink) in the growing season from April to November, and functioned as a strong carbon sink year round. The maximum peak NEE (absolute value) monthly average daily change appeared in August[-17.08 µmol ·(m2 ·s)-1], and the smallest peak appeared in November[-4.47 µmol ·(m2 ·s)-1] during the growing season. The NEE monthly average daily change value during the non-growing season is very weak, though the change is not obvious. GPP, Reco, and NEE maximum daily total values were 11.12, 5.04, and -7.34 g ·(m2 ·d)-1, respectively. GPP, Reco, and NEE maximum monthly total values were 238.97, 105.38, and -144.44 g ·(m2 ·month)-1, respectively, as GPP and NEE maintained high cumulative values that were relatively stable from May through August. The annual GPP, Reco, and NEE were 1223.2, 525.2, and -698.0 g ·(m2 ·a)-1. The observations show that the mature apple orchard ecosystem in the Chinese Loess Plateau has a relatively high carbon sequestration capacity. Nighttime ecosystem respiration Reco.n was positively correlated with the soil temperature and air temperature at different levels, and the correlation coefficients were Ts-5 cm > Ts-10 cm > Ta-4 m > Ta-8 m, The photosynthetic active radiation (PAR) can explain more than 80% of the daytime NEE changes.


Subject(s)
Carbon Dioxide/analysis , Carbon Sequestration , Ecosystem , Malus/growth & development , Seasons , China
6.
Hereditas ; 155: 14, 2018.
Article in English | MEDLINE | ID: mdl-29075165

ABSTRACT

BACKGROUND: The almond tree (Prunus amygdalus Batsch) is an important nut tree grown in subtropical regions that produces nutrient-rich nuts. However, a paucity of genomic information and DNA markers has restricted the development of modern breeding technologies for almond trees. RESULTS: In this study, almonds were sequenced with Illumina paired-end sequencing technology to obtain transcriptome data and develop simple sequence repeats (SSR) markers. We generated approximately 64 million clean reads from the various tissues of mixed almonds, and a total of 42,135 unigenes with an average length of 988 bp were obtained in the present study. A total of 27,586 unigenes (57.7% of all unigenes generated) were annotated using several databases. A total of 112,812 unigenes were annotated with the Gene Ontology (GO) database and assigned to 82 functional sub-groups, and 29,075 unigenes were assigned to the KOG database and classified into 25 function classifications. There were 9470 unigenes assigned to 129 Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways from five categories in the KEGG pathway database. We further identified 8641 SSR markers from 48,012 unigenes. A total of 100 SSR markers were randomly selected to validate quality, and 82 markers could amplify the specific products of A. communis L., whereas 70 markers were successfully transferable to five species (A. ledebouriana, A. mongolica, A. pedunculata, A. tangutica, and A. triloba). CONCLUSIONS: Our study was the first to produce public transcriptome data from almonds. The development of SSR markers will promote genetics research and breeding programmes for almonds.


Subject(s)
Genes, Plant , Microsatellite Repeats , Prunus dulcis/genetics , Transcriptome , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...