Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(23): e202401451, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38563752

ABSTRACT

The diversified synthesis of chiral fluorinated cyclobutane derivatives has remained a difficult task in synthetic chemistry. Herein, we present an approach for asymmetric hydroboration and formal hydrodefluorination of gem-difluorinated cyclobutenes through rhodium catalysis, providing chiral gem-difluorinated α-boryl cyclobutanes and monofluorinated cyclobutenes with excellent regio- and enantioselectivity, respectively. The key to the success of the two transformations relies on an efficient, mild and highly selective rhodium-catalyzed asymmetric hydroboration with HBPin (pinacolborane), in which the subsequent addition of a base, and a catalytic amount of palladium in some cases, results in the formation of formal hydrodefluorination products with the four-membered ring retained. The obtained chiral gem-difluorinated α-boryl cyclobutanes are versatile building blocks that provide a platform for the synthesis of enantioenriched fluorinated cyclobutane derivatives to a great diversity.

2.
Soft Matter ; 20(18): 3780-3786, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38639061

ABSTRACT

Acylphosphatase (AcP) is an enzyme which catalyses the hydrolysis of acylphosphate. The binding with the phosphate ion (Pi) assumes significance in preserving both the stability and enzymatic activity of AcP. While previous studies using single molecule force spectroscopy explored the mechanical properties of AcP, the influence of Pi on its folding and unfolding dynamic behaviors remains unexplored. In this work, using stable magnetic tweezers, we measured and compared the force-dependent folding and unfolding rates of AcP in the Tris buffer and phosphate buffer within a force range from 2 pN to 40 pN. We found that Pi exerts no discernible effect on the folding dynamics but consistently decreases the force-dependent unfolding rate of AcP by a constant ratio across the entire force spectrum. The free energy landscapes of AcP in the absence and presence of Pi are constructed. Our results reveal that Pi selectively binds to the native state of AcP, stabilizing it and suggesting the general properties of specific ligand-receptor interactions.


Subject(s)
Acylphosphatase , Protein Folding , Protein Unfolding , Thermodynamics , Ligands , Phosphates/chemistry , Phosphates/metabolism
3.
J Am Chem Soc ; 146(13): 9191-9204, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38500345

ABSTRACT

Aqueous formic acid dehydrogenation (FAD) is a crucial process for hydrogen production, as hydrogen is a clean energy carrier. During this process, formic acid converts into hydrogen and carbon dioxide over a catalyst. Pd-based catalysts have exhibited significant potential in FAD due to their high activity and selectivity. In this study, we investigated aqueous thermal FAD in a mixture of formic acid and sodium formate using electrochemical open-circuit potential (OCP) measurement by loading the catalysts onto a conductive substrate as a working electrode. By varying the reaction conditions such as the concentration of reactants and modifying Pd with Ag, different FAD rates were obtained. Consequently, we revealed the correlation between the catalyst OCP and FAD rate; superior FAD rates reflected a more negative catalyst OCP. Furthermore, deactivation was observed across all catalysts during FAD, with a concurrent increase in catalyst OCP. Interestingly, we found that the logarithm of the FAD rate showed a linear correlation with the OCP of the catalyst during the decay phase, which we quantitatively explained based on the reaction mechanism. This study presents a new discovery that bridges thermal and electrocatalysis.

4.
Phytomedicine ; 124: 155288, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183698

ABSTRACT

BACKGROUND: The scarcity of drugs targeting AML cells poses a significant challenge in AML management. Z-Ligustilide (Z-LIG), a phthalide compound, shows promising pharmacological potential as a candidate for AML therapy. However, its precise selective mechanism remains unclear. PURPOSE: In order to assess the selective inducement effects of Z-LIG on ferroptosis in AML cells and explore the possible involvement of the Nrf2/HO-1 pathway in the regulation of ferroptosis. METHODS: Through in vitro cell proliferation and in vivo tumor growth tests, the evaluation of Z-LIG's anticancer activity was conducted. Ferroptosis was determined by the measurement of ROS and lipid peroxide levels using flow cytometry, as well as the observation of mitochondrial morphology. To analyze the iron-related factors, western blot analysis was employed. The up-regulation of the Nrf2/HO-1 axis was confirmed through various experimental techniques, including CRISPR/Cas9 gene knockout, fluorescent probe staining, and flow cytometry. The efficacy of Z-LIG in inducing ferroptosis was further validated in a xenograft nude mouse model. RESULTS: Our study revealed that Z-LIG specifically triggered lipid peroxidation-driven cell death in AML cells. Z-LIG downregulated the total protein and nuclear entrance levels of IRP2, resulting in upregulation of FTH1 and downregulation of TFR1. Z-LIG significantly increased the susceptibility to ferroptosis by upregulating ACSL4 levels and simultaneously suppressing the activity of GPX4. Notably, the Nrf2/HO-1 pathway displayed a twofold impact in the ferroptosis induced by Z-LIG. Mild activation suppressed ferroptosis, while excessive activation promoted it, mainly driven by ROS-induced labile iron pool (LIP) accumulation in AML cells, which was not observed in normal human cells. Additionally, Nrf2 knockout and HO-1 knockdown reversed iron imbalance and mitochondrial damage induced by Z-LIG in HL-60 cells. Z-LIG effectively inhibited the growth of AML xenografts in mice, and Nrf2 knockout partially weakened its antitumor effect by inhibiting ferroptosis. CONCLUSION: Our study presents biological proof indicating that the selective initiation of ferroptosis in leukemia cells is credited to the excessive activation of the Nrf2/HO-1 pathway triggered by Z-LIG.


Subject(s)
4-Butyrolactone/analogs & derivatives , Ferroptosis , Leukemia, Myeloid, Acute , Humans , Mice , Animals , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Leukemia, Myeloid, Acute/metabolism , Iron/metabolism
5.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835639

ABSTRACT

Decarbonization has become an urgent affair to restrain global warming. CO2 hydrogenation coupled with H2 derived from water electrolysis is considered a promising route to mitigate the negative impact of carbon emission and also promote the application of hydrogen. It is of great significance to develop catalysts with excellent performance and large-scale implementation. In the past decades, metal-organic frameworks (MOFs) have been widely involved in the rational design of catalysts for CO2 hydrogenation due to their high surface areas, tunable porosities, well-ordered pore structures, and diversities in metals and functional groups. Confinement effects in MOFs or MOF-derived materials have been reported to promote the stability of CO2 hydrogenation catalysts, such as molecular complexes of immobilization effect, active sites in size effect, stabilization in the encapsulation effect, and electron transfer and interfacial catalysis in the synergistic effect. This review attempts to summarize the progress of MOF-based CO2 hydrogenation catalysts up to now, and demonstrate the synthetic strategies, unique features, and enhancement mechanisms compared with traditionally supported catalysts. Great emphasis will be placed on various confinement effects in CO2 hydrogenation. The challenges and opportunities in precise design, synthesis, and applications of MOF-confined catalysis for CO2 hydrogenation are also summarized.


Subject(s)
Carbon Dioxide , Metal-Organic Frameworks , Hydrogenation , Hydrogen , Carbon
6.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36558237

ABSTRACT

During the laser application process, laser energy is usually converted into heat energy, causing high temperature, which affects the (high-speed) aircraft in routine flight. A completely novel photochemical method was investigated to potentially minimize the energy effect of the laser beam. Ag nanoparticles/C3N4 were synthesized by an ultra-low temperature reduced deposit method with Ag mean diameters of 5-25 nm for photofixation of N2. The absorption performance of laser can be improved by using appropriate charge density and small size Ag metal particles. The energy absorption rate was 7.1% over Ag/C3N4 (-40) at 5 mJ/cm2 of laser energy.

7.
Chem Sci ; 13(33): 9774-9783, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36091892

ABSTRACT

Chemical heterogeneous catalysis maximizes performance by controlling the interactions between the catalyst and the substrates. Steady-state catalytic rates depend on the heat of adsorption and the resultant coverage of adsorbates, which in turn reflects the electronic structure of the heterogeneous catalyst surfaces. This study aims to free the surface from high coverage of a kind of substance by externally controlling the electrochemical potential of the catalysts for improved thermal-catalytic rates. We employed aqueous CO oxidation at 295 K as a model reaction, where strong binding of chemisorbed CO (CO*) to the metal surfaces and its high coverage led to inhibition of O2 accessing the surface site. Based on the establishment of coverage-potential-performance correlation, our potential-controlling experiments used an electrochemical configuration to identify the appropriate potentials of Pt/C catalysts that can drastically enhance the CO2 formation rate through the thermal reaction pathway. An anodic potential was applied to suppress the high coverage of chemisorbed CO; consequently, the catalytic testing recorded a 5-fold increase in thermal CO2 formation compared to the open-circuit counterpart with a faradaic efficiency (FE) of over 400%. In situ infrared spectroscopy corroborates the potential-coverage correlation, where the suppression of high CO* coverage due to pinning the catalyst potential triggered the enhancement of thermal-catalytic contribution to CO2 formation. Our extended study employing other metal catalysts also exhibited FEs exceeding unity. This work establishes a universal methodology of electrochemical tools for thermal catalysis to precisely tune the electrochemical potential of solids and achieve green and innovative reactions.

8.
J Am Chem Soc ; 143(18): 7013-7020, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33929193

ABSTRACT

Axially, epitaxially organizing nano-objects of distinct compositions and structures into superlattice nanowires enables full utilization of sunlight, readily engineered band structures, and tunable geometric parameters to fit carrier transport, thus holding great promise for optoelectronics and solar-to-fuel conversion. To maximize their efficiency, the general and high-precision synthesis of colloidal axial superlattice nanowires (ASLNWs) with programmable compositions and structures is the prerequisite; however, it remains challenging. Here, we report an axial encoding methodology toward the ASLNW library with precise control over their compositions, dimensions, crystal phases, interfaces, and periodicity. Using a predesigned, editable nanoparticle framework that offers the synthetic selectivity, we are able to chemically decouple adjacent sub-objects in ASLNWs and thus craft them in a controlled approach, yielding a library of distinct ASLNWs. We integrate therein plasmonic, metallic, or near-infrared-active chalcogenides, which hold great potential in solar energy conversion. Such synthetic capability enables a performance boost in target applications, as we report order-of-magnitude enhanced photocatalytic hydrogen production rates using optimized ASLNWs compared to corresponding solo objects. Furthermore, it is expected that such unique superlattice nanowires could bring out new phenomena.

9.
Chem Sci ; 12(2): 540-545, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-34163783

ABSTRACT

Concerns about energy and the environment are motivating a reexamination of catalytic processes, aiming to achieve more efficient and improved catalysis compatible with sustainability. Designing an active site for such heterogeneous catalytic processes remains a challenge leading to a next level breakthrough. Herein, we discuss a fundamental aspect of heterogeneous catalysis: the chemical potential of electrons in solid catalysts during thermal catalysis, which directly reflects the consequent catalytic reaction rate. The use of electrochemical tools during thermal catalysis allows for the quantitative determination of the ill-defined chemical potentials of solids in operando, whereby the potential-rate relationship can be established. Furthermore, the electrochemical means can also introduce the direct perturbation of catalyst potentials, in turn, perturbing the coverage of adsorbates functioning as poison, promoters, or reactants. We collect selected publications on these aspects, and provide a viewpoint bridging the fields of thermal- and electro-catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...