Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Environ Sci Pollut Res Int ; 30(4): 8987-8997, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35606581

ABSTRACT

The performance of garden waste on spent mushroom substrate (SMS) and chicken manure (CM) co-composting efficiency and humification is unclear. Therefore, this study investigated the impact of garden waste addition on SMS-CM co-composting physicochemical properties, humification process, and the spectral characteristics of dissolved organic matter (DOM). The results showed that garden waste improved the physicochemical properties of SMS-CM co-compost, the thermophilic period was advanced 2 days, the seed germination index increased by 30.2%, and the total organic carbon and total nitrogen content increased by 8.80% and 15.0%, respectively. In addition, garden waste increased humic substances (HS) and humic acid (HA) contents by 10.62% and 34.52%, respectively; the HI, PHA and DP increased by 31.53%, 43.19% and 55.53%, respectively; and the SUVA254 and SUVA280 of DOM also increased by 6.39% and 4.39%, respectively. In particular, HA content and DOM humification increase rapidly in the first 10 days. The increase of HA accounted for 52% of the total increase during composting. Fourier-transform infrared and two-dimensional correlation analysis further confirmed that garden waste could facilitate the degradation of organic molecules, including amino acids, polysaccharides, carboxyl groups, phenols, and alcohol, and contributed to the preferential utilization of carboxyl groups and polysaccharides and thus enhanced humification.


Subject(s)
Agaricales , Composting , Animals , Soil , Dissolved Organic Matter , Manure , Chickens , Gardens , Humic Substances
2.
Huan Jing Ke Xue ; 43(8): 4042-4053, 2022 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-35971702

ABSTRACT

Based on the measured water quality data of Huangyuan County, Huzhu Tu Autonomous County, and Minhe Hui Tu Autonomous County in Hehuang Valley of Qinghai province in the normal and wet seasons, the effects of land use and land cover patterns on regional seasonal water quality were analyzed using remote sensing technology and mathematical statistics. The results showed that:① the concentrations of total nitrogen and total phosphorus in the surface water of Hehuang Valley were high. Water pollution areas (Class Ⅳ and Ⅴ) were mainly concentrated in the lower reaches of the river and the junction of tributaries. ② The explanation rate of land use to water quality in the normal season was higher than that in the wet season. The optimal scale was the 200 m buffer scale in the normal season, and farmland and towns were the main influencing factors. The optimal scale in the wet season was the 5 km buffer scale, and the main influencing factor was the forest. ③ In the normal season, the proportion of farmland was positively correlated with the concentration of total nitrogen and permanganate index but negatively correlated with the concentration of total phosphorus. The proportion of town area was positively correlated with the water quality index. The proportion of grassland area in the wet season was positively correlated with the permanganate index. The proportion of forestland area was negatively correlated with water quality index in both periods. Farmland, grassland, and town areas were the "source" landscape of pollutants, but farmland also played a role in intercepting pollutants to a certain extent. Forest land was the "sink" landscape of pollutants. ④ The pattern of forestland in the 200 m buffer zone in the normal season had a high explanatory rate for water quality, and the largest patch index (LPI) and patch density (PD) were the main factors. The study showed that it is an important measure to purify the surface water quality of Hehuang Valley by rationally planning the proportion of residential land and cultivated land and improving the coverage rate and aggregation degree of forestland around the riparian zone.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , China , Environmental Monitoring/methods , Nitrogen/analysis , Phosphorus/analysis , Rivers , Water Pollutants, Chemical/analysis , Water Quality
3.
Free Radic Biol Med ; 166: 348-357, 2021 04.
Article in English | MEDLINE | ID: mdl-33705958

ABSTRACT

Sepsis rapidly contributed to multiorgan failure affecting most commonly of the cardiovascular and respiratory systems and yet there were no effective therapies. The current study aimed at providing evidence on the cardioprotection of suppression of 5-Lipoxygenase (5-Lox) and identifying the possible mechanism in the mouse model of sepsis. The cecal ligation-perforation (CLP) model was applied to C57BL/6 wild-type (WT) and 5-Lox deficient (5-Lox-/-) mice to induce sepsis. 5-Lox expression was up-regulated in mouse myocardium and leukotriene B4 (LTB4) level was increased in serum after sepsis. Subsequently, we utilized a recombinant adenoviral expression vector (rAAV9) to overexpress Alox5 gene in adult mice. Compared to WT mice, 5-Lox overexpression accelerated CLP-induced myocardial injury and cardiac dysfunction. Oppositely, 5-Lox deficiency offered protection against myocardial injury in a mouse model of sepsis and attenuated sepsis-mediated inflammation, oxidative stress and apoptosis in the mouse heart. Mechanically, 5-Lox promoted LTB4 production, which in turn contributed to the activation of leukotriene B4 receptor 1 (BLT1)/interleukin-12p35 (IL-12p35) pathway and enhanced M1 macrophage polarization. However, the suppression of BLT1 by either gene mutation or antagonist U75302 significantly inhibited the adverse effect of 5-Lox in sepsis. Further study demonstrated that pharmacological inhibition of 5-Lox prevented CLP-induced septic cardiomyopathy (SCM). Our study identified 5-Lox exacerbated sepsis-associated myocardial injury through activation of LTB4 production and promoting BLT1/IL-12p35 pathway. Hence, inhibition of 5-Lox may be a potential candidate strategy for septic cardiac dysfunction treatment.


Subject(s)
Receptors, Leukotriene B4 , Sepsis , Animals , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Down-Regulation , Interleukin-12 Subunit p35 , Mice , Mice, Inbred C57BL , Receptors, Leukotriene B4/genetics , Receptors, Leukotriene B4/metabolism , Sepsis/complications , Sepsis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...