Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 14(1): 210, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802393

ABSTRACT

Atypical antipsychotics (AAPs) are primary medications for schizophrenia (SZ). However, their use is frequently associated with the development of adverse metabolic effects, and the mechanisms behind these negative effects remain inadequately elucidated. To investigate the role of macrophage migration inhibitory factor (MIF) in regulating antipsychotic-induced metabolic abnormalities, between 2017 and 2020, a cross-sectional study was conducted, involving 142 healthy individuals and 388 SZ patients undergoing treatment with either typical antipsychotic (TAP) or AAP medications. Symptoms of SZ patients were evaluated using the Positive and Negative Syndrome Scale (PANSS), and measurements of metabolic indices and plasma MIF levels were performed on all individuals. A significant increase in plasma MIF levels was observed in groups receiving five major AAP monotherapies in comparison to healthy controls (all p < 0.0001). There was no such increase shown in the group receiving TAP treatment (p > 0.05). Elevated plasma MIF levels displayed a notable correlation with insulin resistance (ß = 0.024, p = 0.020), as well as with the levels of triglycerides (ß = 0.019, p = 0.001) and total cholesterol (ß = 0.012, p = 0.038) in the groups receiving AAPs. However, while the TAP group also displayed certain metabolic dysfunction compared to healthy controls, no significant association was evident with plasma MIF levels (all p > 0.05). In conclusion, plasma MIF levels exhibit a distinctive correlation with metabolic abnormalities triggered by AAPs. Hence, there is potential for further development of MIF as a distinctive marker for monitoring adverse metabolic effects induced by AAPs in clinical settings.


Subject(s)
Antipsychotic Agents , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors , Schizophrenia , Humans , Macrophage Migration-Inhibitory Factors/blood , Male , Antipsychotic Agents/adverse effects , Antipsychotic Agents/therapeutic use , Female , Adult , Schizophrenia/drug therapy , Schizophrenia/blood , Cross-Sectional Studies , Intramolecular Oxidoreductases/blood , Middle Aged , Insulin Resistance , Case-Control Studies , Triglycerides/blood
2.
Mol Metab ; 79: 101834, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37935315

ABSTRACT

Attenuation of adipose hormone sensitive lipase (HSL) may impair lipolysis and exacerbate obesity. We investigate the role of cytokine, macrophage migration inhibitory factor (MIF) in regulating adipose HSL and adipocyte hypertrophy. Extracellular MIF downregulates HSL in an autocrine fashion, by activating the AMPK/JNK signaling pathway upon binding to its membrane receptor, CD74. WT mice fed high fat diet (HFD), as well as mice overexpressing MIF, both had high circulating MIF levels and showed suppression of HSL during the development of obesity. Blocking the extracellular action of MIF by a neutralizing MIF antibody significantly reduced obesity in HFD mice. Interestingly, intracellular MIF binds with COP9 signalosome subunit 5 (Csn5) and JNK, which leads to an opposing effect to inhibit JNK phosphorylation. With global MIF deletion, adipocyte JNK phosphorylation increased, resulting in decreased HSL expression, suggesting that the loss of MIF's intracellular inhibitory action on JNK was dominant in Mif-/- mice. Adipose tissue from Mif-/- mice also exhibited higher Akt and lower PKA phosphorylation following HFD feeding compared with WT, which may contribute to the downregulation of HSL activation during more severe obesity. Both intracellular and extracellular MIF have opposing effects to regulate HSL, but extracellular actions predominate to downregulate HSL and exacerbate the development of obesity during HFD.


Subject(s)
Macrophage Migration-Inhibitory Factors , Animals , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Obesity/metabolism , Sterol Esterase/metabolism
3.
iScience ; 26(6): 106923, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37283810

ABSTRACT

While insulin resistance (IR) is associated with inflammation in white adipose tissue, we report a non-inflammatory adipose mechanism of high fat-induced IR mediated by loss of Pref-1. Pref-1, released from adipose Pref-1+ cells with characteristics of M2 macrophages, endothelial cells or progenitors, inhibits MIF release from both Pref-1+ cells and adipocytes by binding with integrin ß1 and inhibiting the mobilization of p115. High palmitic acid induces PAR2 expression in Pref-1+ cells, downregulating Pref-1 expression and release in an AMPK-dependent manner. The loss of Pref-1 increases adipose MIF secretion contributing to non-inflammatory IR in obesity. Treatment with Pref-1 blunts the increase in circulating plasma MIF levels and subsequent IR induced by a high palmitic acid diet. Thus, high levels of fatty acids suppress Pref-1 expression and secretion, through increased activation of PAR2, resulting in an increase in MIF secretion and a non-inflammatory adipose mechanism of IR.

4.
J Clin Invest ; 128(11): 4997-5007, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30295645

ABSTRACT

Atypical antipsychotics are highly effective antischizophrenic medications but their clinical utility is limited by adverse metabolic sequelae. We investigated whether upregulation of macrophage migration inhibitory factor (MIF) underlies the insulin resistance that develops during treatment with the most commonly prescribed atypical antipsychotic, olanzapine. Olanzapine monotherapy increased BMI and circulating insulin, triglyceride, and MIF concentrations in drug-naive schizophrenic patients with normal MIF expression, but not in genotypic low MIF expressers. Olanzapine administration to mice increased their food intake and hypothalamic MIF expression, which led to activation of the appetite-related AMP-activated protein kinase and Agouti-related protein pathway. Olanzapine also upregulated MIF expression in adipose tissue, which reduced lipolysis and increased lipogenic pathways. Increased plasma lipid concentrations were associated with abnormal fat deposition in liver and skeletal muscle, which are important determinants of insulin resistance. Global MIF-gene deletion protected mice from olanzapine-induced insulin resistance, as did intracerebroventricular injection of neutralizing anti-MIF antibody, supporting the role of increased hypothalamic MIF expression in metabolic dysfunction. These findings uphold the potential pharmacogenomic value of MIF genotype determination and suggest that MIF may be a tractable target for reducing the metabolic side effects of atypical antipsychotic therapy.


Subject(s)
Adipose Tissue/metabolism , Antipsychotic Agents/adverse effects , Hypothalamus/metabolism , Insulin Resistance , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Olanzapine/adverse effects , Adipose Tissue/pathology , Adolescent , Adult , Animals , Antipsychotic Agents/administration & dosage , Body Mass Index , Eating/drug effects , Female , HeLa Cells , Humans , Hypothalamus/pathology , Lipids/blood , Lipolysis/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Middle Aged , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Olanzapine/administration & dosage
5.
Cardiovasc Res ; 72(1): 124-33, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16934788

ABSTRACT

OBJECTIVE: Lipoprotein lipase (LPL) metabolizes the triglyceride (TG) core of lipoproteins. We evaluated whether circulating lipids can regulate LPL by influencing the transfer of enzyme from the myocyte to the endothelial lumen. METHODS: Acute intralipid (IL, 10% and 20%) infusion was performed in male Wistar rats. After 3 h, insulin resistance was assessed using a euglycemic hyperinsulinemic clamp. Cardiac LPL activity was determined by retrogradely perfusing the hearts with heparin. Immunogold electron microscopy visualized LPL, and heparanase was detected by immunofluorescence. Cardiac myocytes were also isolated, and heparin-releasable LPL activity was measured. RESULTS: IL infusion increased both plasma and cardiac lipids. Circulating basal plasma LPL activity increased for the duration of the infusion. Compared to control (CON) hearts, there was a substantial decrease in heparin-releasable LPL activity at the vascular lumen following 3 h of IL infusion, an effect unrelated to changes in gene and protein expression or whole-body insulin resistance. Although constant perfusion of CON hearts with heparin stripped off most of the luminal bound LPL, hearts from IL-infused animals continued to release excessive amounts of the enzyme, suggesting buildup of LPL within endothelial cells or at the endothelial basolateral surface. Immunogold labeling confirmed this observation and demonstrated robust anti-LPL staining at these sites, only in IL hearts. Perfusing hearts from IL-rats in vitro, in the absence of TG, allowed the accumulated enzyme pool to transfer to the coronary lumen. CONCLUSION: Our data suggest that acute amplification of lipids reduces cardiac luminal LPL but facilitates additional recruitment of cardiomyocyte enzyme. Should this mechanism occur globally, it could contribute towards management of hyperlipidemia.


Subject(s)
Insulin Resistance , Lipids/administration & dosage , Lipoprotein Lipase/metabolism , Myocardium/enzymology , Animals , Cells, Cultured , Fatty Acids/analysis , Fatty Acids/metabolism , Fluorescent Antibody Technique , Gene Expression , Glucose/pharmacology , Glucuronidase/analysis , Glucuronidase/metabolism , Heparin/metabolism , Infusions, Intravenous , Insulin/pharmacology , Lipids/analysis , Lipids/blood , Lipoprotein Lipase/analysis , Lipoprotein Lipase/genetics , Male , Microscopy, Immunoelectron , Myocardium/chemistry , Myocytes, Cardiac/enzymology , Perfusion , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Triglycerides/analysis , Triglycerides/metabolism
6.
Am J Physiol Endocrinol Metab ; 291(2): E420-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16608885

ABSTRACT

Glucocorticoid therapy is often associated with impaired insulin sensitivity and cardiovascular disease. The present study was designed to evaluate cardiac fatty acid (FA) composition and metabolism following acute dexamethasone (Dex) treatment. Using the euglycemic hyperinsulinemic clamp, rats injected with Dex demonstrated a reduced glucose infusion rate. This whole body insulin resistance was also associated with a heart-specific increase in pyruvate dehydrogenase kinase 4 gene expression and a reduction in the rate of glucose oxidation. Dex treatment increased basal and postheparin plasma lipolytic activity. In the heart, palmitic and oleic acid levels were higher after 4 h of Dex and decreased to control (CON) levels within 8 h. Measurement of polyunsaturated FAs demonstrated a drop in linoleic and gamma-linolenic acid, with an increase in arachidonic acid (AA) after acute Dex injection. Tissue FA can be either oxidized or stored as triglyceride (TG). At 4 h, Dex augmented cardiac TG accumulation. However, this increase in tissue TG could not be maintained, such that at 8 h following Dex, TG declined to CON levels. AMP-activated protein kinase (AMPK) activation is known to promote FA oxidation through its control of acetyl-CoA carboxylase (ACC). Acute Dex promoted ACC phosphorylation, and increased cardiac palmitate oxidation, likely through its effects in increasing AMPK phosphorylation and total AMPK protein and gene expression. Whether these acute effects of Dex on FA oxidation, TG storage, and arachidonic acid accumulation can be translated into increased cardiovascular risk following chronic therapy has yet to be determined.


Subject(s)
Dexamethasone/administration & dosage , Fatty Acids/metabolism , Heart/drug effects , Insulin Resistance/physiology , Myocardium/metabolism , Adaptation, Physiological/drug effects , Adaptation, Physiological/physiology , Animals , Male , Metabolic Clearance Rate , Rats , Rats, Wistar , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...