Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
ACS Nano ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016679

ABSTRACT

Nanocatalytic therapy is an emerging technology that uses synthetic nanoscale enzyme mimics for biomedical treatment. However, in the field of neuroscience, achieving neurological protection while simultaneously killing tumor cells is a technical challenge. Herein, we synthesized a biomimic and translational cerium vanadate (CeVO4) nanozyme for glioblastoma (GBM) therapy and the repair of brain damage after GBM ionizing radiation (IR). This system exhibited pH dependence: it showed potent Superoxide dismutase (SOD) enzyme activity in a neutral environment and Peroxidase (POD) enzyme activity in an acidic environment. In GBM cells, this system acted in lysosomes, causing cellular damage and reactive oxygen species (ROS) accumulation; in neuronal cells, this nanozyme could undergo lysosomal escape and nanozyme aggregation with mitochondria, reversing the mitochondrial damage caused by IR and restoring the expression level of the antiapoptotic BCL-2 protein. Mechanistically, we believe that this distribution difference is related to the specific uptake internalization mechanism and lysosomal repair pathway in neurons, and ultimately led to the dual effect of tumor killing and nerve repair in the in vivo model. In summary, this study provides insight into the repair of brain damage after GBM radiation therapy.

2.
mSphere ; : e0042824, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012104

ABSTRACT

Fusarium oxysporum f. sp. cubense (Foc) poses a significant threat to banana crops as a lethal fungal pathogen. The global spread of Foc underscores the formidable challenges associated with traditional management methods in combating this pathogen. This study delves into the hypovirulence-associated mycovirus in Foc. From Foc strain LA6, we isolated and characterized a novel member of the Hadakaviridae family, named Hadaka virus 1 strain LA6 (HadV1-LA6). HadV1-LA6 comprises 10 genomic RNA segments, with RNA1 to RNA7 sharing 80.9%-95.0% amino acid sequence identity with known HadV1-7n, while RNA8 to RNA10 display significantly lower identity. HadV1-LA6 demonstrates horizontal transmission capabilities in an all-or-none fashion between different Foc strains via coculturing. Phenotypic comparisons highlight that HadV1-LA6 significantly reduces the growth rates of its host fungus under cell wall stress and oxidative stress conditions. Importantly, HadV1-LA6 attenuates Foc's virulence in detached leaves and banana plants. This study represents the first introduction of a novel hypovirulence-associated Hadaka virus 1 in Foc.IMPORTANCEFusarium wilt of banana (FWB) is a severe fungal disease caused by soil-borne Fusarium oxysporum f. sp. cubense (Foc). Among various strategies, biocontrol emerges as a safe, ecologically friendly, and cost-effective approach to managing FWB. In this study, we focus on exploring the potential of a novel hypovirulent member of hadakavirid, HadV1-LA6. Previous reports suggest that HadV1 shows no apparent effect on the host. However, through phenotypic assessments, we demonstrate that HadV1-LA6 significantly impedes the growth rates of its host fungus under stress conditions. More importantly, HadV1-LA6 exhibits a remarkable capacity to attenuate Foc's virulence in detached leaves and banana plants. Furthermore, HadV1-LA6 could be horizontally transmitted between different Foc strains, presenting a promising resource for revealing the molecular mechanism of the interaction between Hadaka virus 1 and its host.

3.
Food Chem ; 457: 139648, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38908249

ABSTRACT

Florfenicol (F), an antimicrobial agent exclusive to veterinary use within the chloramphenicol class, is extensively applied as a broad-spectrum remedy for animal diseases. Despite its efficacy, concerns arise over potential deleterious residues in animal-derived edibles, posing threats to human health. This study pioneers an innovative approach, introducing a quantum dot fluorescence-based immunoassay (FLISA) for the meticulous detection of F residues in animal-derived foods and feeds. This method demonstrates heightened sensitivity, with a detection limit of 0.3 ng/mL and a quantitative detection range of 0.6-30.4 ng/mL. Method validation, applied to diverse food sources, yields recoveries from 90.4 % to 109.7 %, featuring RSDs within 1.3 % to 8.7 %, the results showed high consistency with the national standard HPLC-MS/MS detection method. These findings underscore the method's accuracy and precision, positioning it as a promising tool for swift and reliable F residue detection, with substantial implications for fortifying food safety monitoring.

4.
Ophthalmic Genet ; : 1-9, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563525

ABSTRACT

BACKGROUND: Congenital cataract is a common cause of blindness. Genetic factors always play important role. MATERIAL AND METHODS: This study identified a novel missense variant (c.1412C>T (p.P471L)) in the EZR gene in a four-generation Chinese family with nuclear cataract by linkage analysis and whole-exome sequencing. A knockout study in zebrafish using transcription activator-like effector nucleases was carried out to gain insight into candidate gene function. RESULTS: Conservative and functional prediction suggests that the P-to-L substitution may impair the function of the human ezrin protein. Histology showed developmental delays in the ezrin-mutated zebrafish, manifesting as multilayered lens epithelial cells. Immunohistochemistry revealed abnormal proliferation patterns in mutant fish. CONCLUSIONS: The study suggests that ezrin may be involved in the enucleation and differentiation of lens epithelial cells.

5.
Int J Biol Macromol ; 264(Pt 2): 130689, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458287

ABSTRACT

African Swine Fever Virus (ASFV) is a highly contagious pathogen posing a serious threat to the global swine industry. Despite this, there is currently no effective vaccine against this virus. Within ASFV's core shell structure, p37, a product of polyprotein pp220, shares sequence similarity with SUMO-1 proteases. Localization studies show p37 in various nuclear regions during early infection, shifting to the cytoplasm later on. Research indicates active export of p37 from the nucleus, mediated by CRM1-dependent and -independent pathways. Hydrophobic amino acids in p37 are crucial for these pathways, highlighting their importance throughout the ASFV replication cycle. Additionally, p37 serves as the first nucleocytoplasmic shuttle protein encoded by ASFV, participating in the intranuclear material transport process during ASFV infection of host cells. In this study, we successfully screened five murine monoclonal antibodies targeting p37. Through the truncated expression method, we identified four dominant antigenic epitopes of p37 for the first time. Furthermore, utilizing alanine scanning technology, we determined the key amino acid residues for each epitope. This research not only provides essential information for a deeper understanding of the protein's function but also establishes a significant theoretical foundation for the design and development of ASFV vaccines.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , Mice , Antibodies, Monoclonal , Viral Proteins/chemistry , African Swine Fever/prevention & control
6.
Front Pharmacol ; 15: 1358262, 2024.
Article in English | MEDLINE | ID: mdl-38464726

ABSTRACT

Valproic acid (VPA) has been widely used as an antiepileptic drug for decades. Although VPA is effective and well-tolerated, long-term VPA treatment is usually associated with hepatotoxicity. However, the underlying mechanisms of VPA-caused hepatotoxicity remain unclear. In this study, a total of 157 pediatric patients with epilepsy were recruited and divided into normal liver function (NLF, 112 subjects) group and abnormal liver function (ABLF, 45 subjects) group. We observed that MTHFR A1298C and MTHFR C677T variants may be linked to VPA-induced liver dysfunction (p = 0.001; p = 0.023, respectively). We also found that the MTHFR A1298C polymorphism was associated with a higher serum Hcy level (p = 0.001) and a lower FA level (p = 0.001). Moreover, the serum Hcy levels was strongly correlated with the GSH and TBARS concentrations (r = -0.6065, P < 0.001; r = 0.6564, P < 0.001, respectively). Furthermore, logistic analysis indicated that MTHFR A1298C/C677T polymorphisms and increased Hcy concentrations may be risk factors for VPA-induced liver dysfunction. These results suggested that individual susceptibility to VPA-induced liver dysfunction may result from MTHFR A1298C/C677T polymorphisms and increased Hcy levels. This study may be helpful for the prevention and guidance of VPA-induced liver dysfunction.

7.
Neuro Oncol ; 26(6): 1027-1041, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38285005

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is characterized by chromosome 7 copy number gains, notably 7q34, potentially contributing to therapeutic resistance, yet the underlying oncogenes have not been fully characterized. Pertinently, the significance of long noncoding RNAs (lncRNAs) in this context has gained attention, necessitating further exploration. METHODS: FAM131B-AS2 was quantified in GBM samples and cells using qPCR. Overexpression and knockdown of FAM131B-AS2 in GBM cells were used to study its functions in vivo and in vitro. The mechanisms of FAM131B-AS2 were studied using RNA-seq, qPCR, Western blotting, RNA pull-down, coimmunoprecipitation assays, and mass spectrometry analysis. The phenotypic changes that resulted from FAM131B-AS2 variation were evaluated through CCK8 assay, EdU assay, comet assay, and immunofluorescence. RESULTS: Our analysis of 149 primary GBM patients identified FAM131B-AS2, a lncRNA located in the 7q34 region, whose upregulation predicts poor survival. Mechanistically, FAM131B-AS2 is a crucial regulator of the replication stress response, stabilizing replication protein A1 through recruitment of ubiquitin-specific peptidase 7 and activating the ataxia telangiectasia and rad3-related protein kinase pathway to protect single-stranded DNA from breakage. Furthermore, FAM131B-AS2 overexpression inhibited CD8+ T-cell infiltration, while FAM131B-AS2 inhibition activated the cGAS-STING pathway, increasing lymphocyte infiltration and improving the response to immune checkpoint inhibitors. CONCLUSIONS: FAM131B-AS2 emerges as a promising indicator for adjuvant therapy response and could also be a viable candidate for combined immunotherapies against GBMs.


Subject(s)
Brain Neoplasms , Glioblastoma , RNA, Long Noncoding , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , RNA, Long Noncoding/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Mice , Animals , Gene Expression Regulation, Neoplastic , Cell Proliferation , DNA Copy Number Variations , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Prognosis , Disease Progression , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Tumor Cells, Cultured , DNA Replication , Xenograft Model Antitumor Assays , Apoptosis , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Survival Rate , Mice, Nude , Cell Line, Tumor , Male , Female
8.
Plant Physiol ; 194(4): 2434-2448, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38214208

ABSTRACT

Cereal endosperm represents the most important source of the world's food. Nevertheless, the molecular mechanisms behind sugar import into rice (Oryza sativa) endosperm and their relationship with auxin signaling are poorly understood. Here, we report that auxin transport inhibitor response 1 (TIR1) plays an essential role in rice grain yield and quality via modulating sugar transport into endosperm. The fluctuations of OsTIR1 transcripts parallel to the early stage of grain expansion among those of the 5 TIR1/AFB (auxin-signaling F-box) auxin co-receptor proteins. OsTIR1 is abundantly expressed in ovular vascular trace, nucellar projection, nucellar epidermis, aleurone layer cells, and endosperm, providing a potential path for sugar into the endosperm. Compared to wild-type (WT) plants, starch accumulation is repressed by mutation of OsTIR1 and improved by overexpression of the gene, ultimately leading to reduced grain yield and quality in tir1 mutants but improvement in overexpression lines. Of the rice AUXIN RESPONSE FACTOR (ARF) genes, only the OsARF25 transcript is repressed in tir1 mutants and enhanced by overexpression of OsTIR1; its highest transcript is recorded at 10 d after fertilization, consistent with OsTIR1 expression. Also, OsARF25 can bind the promoter of the sugar transporter OsSWEET11 (SWEET, sugars will eventually be exported transporter) in vivo and in vitro. arf25 and arf25/sweet11 mutants exhibit reduced starch content and seed size (relative to the WTs), similar to tir1 mutants. Our data reveal that OsTIR1 mediates sugar import into endosperm via the auxin signaling component OsARF25 interacting with sugar transporter OsSWEET11. The results of this study are of great significance to further clarify the regulatory mechanism of auxin signaling on grain development in rice.


Subject(s)
Oryza , Oryza/metabolism , Plant Proteins/metabolism , Seeds/genetics , Endosperm/metabolism , Edible Grain/metabolism , Starch/metabolism , Indoleacetic Acids/metabolism , Sugars/metabolism , Gene Expression Regulation, Plant
9.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 211-225, 2024 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-38258642

ABSTRACT

The banana Fusarium wilt (BFW) caused by Fusarium oxysporum f. sp. cubense tropical race4 (FocTR4) is difficult to control worldwide, which causes a huge economic losse to banana industry. The purpose of this study was to screen Trichoderma strains with antagonistic activity against FocTR4, to isolate and purify the active compound from the fermentation broth, so as to provide important biocontrol strains and active compound resources. In this work, Trichoderma strains were isolated and screened from the rhizosphere soil of crops, and the strains capable of efficiently inhibiting FocTR4 were screened by plate confrontation, and further confirmed by testing inhibition for the conidial germination and mycelial growth of FocTR4. The phylogenetic tree clarified the taxonomic status of the biocontrol strains. Moreover, the active components in the fermentation broth of the strains were separated and purified by column chromatography, the structure of the most active component was analyzed by nuclear magnetic resonance spectroscopy (NMR), the BFW control effect was tested by pot experiments. We obtained a strain JSHA-CD-1003 with antagonistic activity against FocTR4, and the inhibition rate from plate confrontation was 60.6%. The fermentation broth of JSHA-CD-1003 completely inhibited the germination of FocTR4 conidia within 24 hours. The inhibition rate of FocTR4 hyphae growth was 52.6% within 7 d. A phylogenetic tree was constructed based on the ITS and tef1-α gene tandem sequences, and JSHA-CD-1003 was identified as Trichoderma brevicompactum. Purification and NMR identification showed that the single active compound was trichodermin, and the minimum inhibitory concentration (MIC) was 25 µg/mL. Pot experiments showed that the fermentation broth of strain JSHA-CD-1003 was effective against BFW. The control rate of leaf yellowing was 47.4%, and the rate of bulb browning was 52.0%. Therefore, JSHA-CD-1003 effectively inhibited FocTR4 conidial germination and mycelium growth through producing trichodermin, and showed biocontrol effect on banana wilt caused by FocTR4, thus is a potential biocontrol strain.


Subject(s)
Fusarium , Hypocreales , Musa , Phylogeny , Trichodermin
10.
Microbiol Spectr ; 12(2): e0316923, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38206032

ABSTRACT

Yeast cells involved in fermentation processes face various stressors that disrupt redox homeostasis and cause cellular damage, making the study of oxidative stress mechanisms crucial. In this investigation, we isolated a resilient yeast strain, Candida nivariensis GXAS-CN, capable of thriving in the presence of high concentrations of H2O2. Transcriptomic analysis revealed the up-regulation of multiple antioxidant genes in response to oxidative stress. Deletion of the catalase gene Cncat significantly impacted H2O2-induced oxidative stress. Enzymatic analysis of recombinant CnCat highlighted its highly efficient catalase activity and its essential role in mitigating H2O2. Furthermore, over-expression of CnCat in Saccharomyces cerevisiae improved oxidative resistance by reducing intracellular ROS accumulation. The presence of multiple stress-responsive transcription factor binding sites at the promoters of antioxidative genes indicates their regulation by different transcription factors. These findings demonstrate the potential of utilizing the remarkably tolerant C. nivariensis GXAS-CN or enhancing the resistance of S. cerevisiae to improve the efficiency and cost-effectiveness of industrial fermentation processes.IMPORTANCEEnduring oxidative stress is a crucial trait for fermentation strains. The importance of this research is its capacity to advance industrial fermentation processes. Through an in-depth examination of the mechanisms behind the remarkable H2O2 resistance in Candida nivariensis GXAS-CN and the successful genetic manipulation of this strain, we open the door to harnessing the potential of the catalase CnCat for enhancing the oxidative stress resistance and performance of yeast strains. This pioneering achievement creates avenues for fine-tuning yeast strains for precise industrial applications, ultimately leading to more efficient and cost-effective biotechnological processes.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Catalase/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Antioxidants/metabolism
11.
Cancer Res ; 84(3): 372-387, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37963207

ABSTRACT

Neuronal activity can drive progression of high-grade glioma by mediating mitogen production and neuron-glioma synaptic communications. Glioma stem cells (GSC) also play a significant role in progression, therapy resistance, and recurrence in glioma, which implicates potential cross-talk between neuronal activity and GSC biology. Here, we manipulated neuronal activity using chemogenetics in vitro and in vivo to study how it influences GSCs. Neuronal activity supported glioblastoma (GBM) progression and radioresistance through exosome-induced proneural-to-mesenchymal transition (PMT) of GSCs. Molecularly, neuronal activation led to elevated miR-184-3p in neuron-derived exosomes that were taken up by GSCs and reduced the mRNA N6-methyladenosine (m6A) levels by inhibiting RBM15 expression. RBM15 deficiency decreased m6A modification of DLG3 mRNA and subsequently induced GSC PMT by activating the STAT3 pathway. Loss of miR-184-3p in cortical neurons reduced GSC xenograft growth, even when neurons were activated. Levetiracetam, an antiepileptic drug, reduced the neuronal production of miR-184-3p-enriched exosomes, inhibited GSC PMT, and increased radiosensitivity of tumors to prolong survival in xenograft mouse models. Together, these findings indicate that exosomes derived from active neurons promote GBM progression and radioresistance by inducing PMT of GSCs. SIGNIFICANCE: Active neurons secrete exosomes enriched with miR-184-3p that promote glioblastoma progression and radioresistance by driving the proneural-to-mesenchymal transition in glioma stem cells, which can be reversed by antiseizure medication levetiracetam.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , MicroRNAs , Humans , Animals , Mice , Glioblastoma/pathology , Brain Neoplasms/pathology , Levetiracetam/metabolism , Levetiracetam/therapeutic use , Neoplastic Stem Cells/pathology , Glioma/pathology , Neurons/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism , Cell Line, Tumor , Cell Proliferation/genetics
12.
Clin Cancer Res ; 30(6): 1160-1174, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37855702

ABSTRACT

PURPOSE: Neuronal activity in the brain has been reported to promote the malignant progression of glioma cells via nonsynaptic paracrine and electrical synaptic integration mechanisms. However, the interaction between neuronal activity and the immune microenvironment in glioblastoma (GBM) remains largely unclear. EXPERIMENTAL DESIGN: By applying chemogenetic techniques, we enhanced and inhibited neuronal activity in vitro and in a mouse model to study how neuronal activity regulates microglial polarization and affects GBM progression. RESULTS: We demonstrate that hypoxia drove glioma stem cells (GSC) to produce higher levels of glutamate, which activated local neurons. Neuronal activity promoted GBM progression by facilitating microglial M2 polarization through enriching miR-200c-3p in neuron-derived exosomes, which decreased the expression of the m6A writer zinc finger CCCH-type containing 13 (ZC3H13) in microglia, impairing methylation of dual specificity phosphatase 9 (DUSP9) mRNA. Downregulation of DUSP9 promoted ERK pathway activation, which subsequently induced microglial M2 polarization. In the mouse model, cortical neuronal activation promoted microglial M2 polarization whereas cortical neuronal inhibition decreased microglial M2 polarization in GBM xenografts. miR-200c-3p knockdown in cortical neurons impaired microglial M2 polarization and GBM xenograft growth, even when cortical neurons were activated. Treatment with the anti-seizure medication levetiracetam impaired neuronal activation and subsequently reduced neuron-mediated microglial M2 polarization. CONCLUSIONS: These findings indicated that hypoxic GSC-induced neuron activation promotes GBM progression by polarizing microglia via the exosomal miR-200c-3p/ZC3H13/DUSP9/p-ERK pathway. Levetiracetam, an antiepileptic drug, blocks the abnormal activation of neurons in GBM and impairs activity-dependent GBM progression. See related commentary by Cui et al., p. 1073.


Subject(s)
Adenine/analogs & derivatives , Glioblastoma , Glioma , MicroRNAs , Mice , Animals , Humans , Microglia , MicroRNAs/genetics , MicroRNAs/metabolism , Levetiracetam/metabolism , Glioma/pathology , Glioblastoma/pathology , Hypoxia/metabolism , Neurons , Demethylation , Tumor Microenvironment/genetics
13.
J Fungi (Basel) ; 9(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37998853

ABSTRACT

Banana Fusarium wilt (BFW), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), poses significant threats to banana cultivation. Currently, effective control methods are lacking, and biological control has emerged as a possible strategy to manage BFW outbreaks. In this investigation, 109 bacterial strains were isolated from the rhizospheric soil surrounding banana plants in search of potent biological agents against Foc. Strain 91 exhibited the highest antifungal activity against the causal agent of Foc and was identified as Pseudomonas aeruginosa through 16S rRNA gene sequencing and scanning electron microscopy (SEM). Elucidation of strain 91's inhibitory mechanism against Foc revealed a multifaceted antagonistic approach, encompassing the production of bioactive compounds and the secretion of cell wall hydrolytic enzymes. Furthermore, strain 91 displayed various traits associated with promoting plant growth and showed adaptability to different carbon sources. By genetically tagging with constitutively expressing GFP signals, effective colonization of strain 91 was mainly demonstrated in root followed by leaf and stem tissues. Altogether, our study reveals the potential of P. aeruginosa 91 for biocontrol based on inhibition mechanism, adaptation, and colonization features, thus providing a promising candidate for the control of BFW.

14.
J Nanobiotechnology ; 21(1): 233, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37481646

ABSTRACT

BACKGROUND: The immunosuppressive microenvironment in glioma induces immunotherapy resistance and is associated with poor prognosis. Glioma-associated mesenchymal stem cells (GA-MSCs) play an important role in the formation of the immunosuppressive microenvironment, but the mechanism is still not clear. RESULTS: We found that GA-MSCs promoted the expression of CD73, an ectonucleotidase that drives immunosuppressive microenvironment maintenance by generating adenosine, on myeloid-derived suppressor cells (MDSCs) through immunosuppressive exosomal miR-21 signaling. This process was similar to the immunosuppressive signaling mediated by glioma exosomal miR-21 but more intense. Further study showed that the miR-21/SP1/DNMT1 positive feedback loop in MSCs triggered by glioma exosomal CD44 upregulated MSC exosomal miR-21 expression, amplifying the glioma exosomal immunosuppressive signal. Modified dendritic cell-derived exosomes (Dex) carrying miR-21 inhibitors could target GA-MSCs and reduce CD73 expression on MDSCs, synergizing with anti-PD-1 monoclonal antibody (mAb). CONCLUSIONS: Overall, this work reveals the critical role of MSCs in the glioma microenvironment as signal multipliers to enhance immunosuppressive signaling of glioma exosomes, and disrupting the positive feedback loop in MSCs with modified Dex could improve PD-1 blockade therapy.


Subject(s)
Glioma , MicroRNAs , Myeloid-Derived Suppressor Cells , Humans , Feedback , Immunosuppressive Agents , MicroRNAs/genetics , Tumor Microenvironment , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Exosomes/genetics , Exosomes/metabolism , Sp1 Transcription Factor
15.
Microbiol Spectr ; 11(4): e0195322, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37466437

ABSTRACT

Porcine circovirus type 2 (PCV2) is an important swine infectious pathogen that seriously threatens the global swine industry. PCV2 Cap protein is the only structural and the main immunogenic protein constituting the viral capsid. In this study, a gold nanoparticle-based immunochromatographic strip with high sensitivity and specificity was developed which could be used for rapid detection of PCV2 virions or Cap protein in research. The visual detection limit of the strip was 103.18 50% tissue culture infective does (TCID50)/mL for PCV2, and 2.03 µg/mL for PCV2 Cap protein. No cross-reactivity was observed with the PCV1 and PCV3 Cap proteins and other common swine pathogens such as porcine reproductive and respiratory syndrome virus, classical swine fever virus, pseudorabies virus, porcine epidemic diarrhea virus, porcine parvovirus, and swine influenza virus. The repeatability of the strip was good. The stability of the strip was perfect for 12 months in a dry state at room temperature. Visual results could be obtained within 5 min by simply inserting the strip into the diluted sample. The strip is a time-saving, labor-saving, and reliable tool for testing of PCV2 virions or Cap protein in research. The idea of this study might open a new perspective for the application of the strip. IMPORTANCE Porcine circovirus type 2 (PCV2) Cap protein is the only structural and the main immunogenic protein constituting the viral capsid. Although many methods can be used to identify PCV2 or PCV2 Cap protein in vaccine research, they usually require high workload and time. The developed strip can specifically detect PCV2 virions or Cap protein, and visual qualitative results can be obtained within 5 min by simply diluting the sample and inserting the strip into the sample. The final value of the strip is providing a simple and time-saving method for real-time monitoring of PCV2 antigen in vaccine research with reliable results, such as the different stages of PCV2 Cap protein expression and purification, as well as the different stages of PCV2 reproduction and purification.


Subject(s)
Circoviridae Infections , Circovirus , Metal Nanoparticles , Swine Diseases , Vaccines , Animals , Swine , Circovirus/metabolism , Gold/metabolism , Swine Diseases/epidemiology , Circoviridae Infections/diagnosis , Circoviridae Infections/veterinary , Vaccines/metabolism , Antibodies, Viral
16.
Theranostics ; 13(10): 3310-3329, 2023.
Article in English | MEDLINE | ID: mdl-37351164

ABSTRACT

Background: Glioma stem cells (GSCs) are a key factor in glioblastoma (GBM) development and treatment resistance. GSCs can be divided into the mesenchymal (MES) and proneural (PN) subtypes, and these two subtypes of GSCs can undergo interconversion under certain conditions. MES GSCs have higher malignancy and radioresistance and are closely associated with an immunosuppressive microenvironment. Long noncoding RNAs (lncRNAs) play a broad role in GBM, while the role of GSCs subtype remains unknown. Methods: We performed RNA sequencing to explore the lncRNA expression profile in MES- and PN-subtype GBM tissues. The biological function of a host gene-MIR222HG-in GBM development was confirmed in vitro and in vivo. Specifically, RNA sequencing, RNA pulldown, mass spectrometry, RIP, ChIP, luciferase reporter assays and Co-IP were performed. Results: MIR222HG, the expression of which can be induced by SPI1, has high levels in MES GBM tissues. Functionally, we demonstrated that MIR222HG promotes the MES transition and radioresistance in GSCs in vivo and in vitro. Mechanistically, MIR222HG can bind to the YWHAE/HDAC5 complex to promote the MES transition of GSCs through H4 deacetylation. Moreover, cotranscribed miR221 and miR222 can be delivered to macrophages via exosomes to target SOCS3, causing immunosuppressive polarization. Finally, PLX-4720 sensitivity is associated with SPI1 expression and acts on MES GSCs to enhance radiosensitivity. Conclusions: This study demonstrates that targeting SPI1 to block transcription of the MIR222HG cluster helps to reduce radioresistance and combat the immunosuppressive microenvironment in GBM. PLX-4720 is a potential GBM drug and radiosensitizer.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Brain Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Glioma/metabolism , Glioblastoma/metabolism , Macrophages/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
17.
Cell Death Dis ; 14(2): 147, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810326

ABSTRACT

Glioma is the most common malignant tumor of the central nervous system in adults. The tumor microenvironment (TME) is related to poor prognosis in glioma patients. Glioma cells could sort miRNA into exosomes to modify TME. And hypoxia played an important role in this sorting process, but the mechanism is not clear yet. Our study was to find miRNAs sorted into glioma exosomes and reveal the sorting process. Sequencing analysis of glioma patients cerebrospinal fluid (CSF) and tissue showed that miR-204-3p tends to be sorted into exosomes. miR-204-3p suppressed glioma proliferation through the CACNA1C/MAPK pathway. hnRNP A2/B1 can accelerate exosome sorting of miR-204-3p by binding a specific sequence. Hypoxia plays an important role in exosome sorting of miR-204-3p. Hypoxia can upregulate miR-204-3p by upregulating the translation factor SOX9. Hypoxia promotes the transfer of hnRNP A2/B1 to the cytoplasm by upregulating SUMOylation of hnRNP A2/B1 to eliminate miR-204-3p. Exosomal miR-204-3p promoted tube formation of vascular endothelial cells through the ATXN1/STAT3 pathway. The SUMOylation inhibitor TAK-981 can inhibit the exosome-sorting process of miR-204-3p to inhibit tumor growth and angiogenesis. This study revealed that glioma cells can eliminate the suppressor miR-204-3p to accelerate angiogenesis under hypoxia by upregulating SUMOylation. The SUMOylation inhibitor TAK-981 could be a potential drug for glioma. This study revealed that glioma cells can eliminate the suppressor miR-204-3p to accelerate angiogenesis under hypoxia by upregulating SUMOylation. The SUMOylation inhibitor TAK-981 could be a potential drug for glioma.


Subject(s)
Exosomes , Glioblastoma , Glioma , MicroRNAs , Adult , Humans , Glioblastoma/pathology , Endothelial Cells/metabolism , Sumoylation , Cell Line, Tumor , MicroRNAs/genetics , Glioma/genetics , Hypoxia/metabolism , Exosomes/metabolism , Cell Proliferation , Tumor Microenvironment
18.
Plants (Basel) ; 12(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36679122

ABSTRACT

Leaf inclination is one of the most important components of the ideal architecture, which effects yield gain. Leaf inclination was shown that is mainly regulated by brassinosteroid (BR) and auxin signaling. Here, we reveal a novel regulator of leaf inclination, auxin transporter OsPIN1b. Two CRISPR-Cas9 homozygous mutants, ospin1b-1 and ospin1b-2, with smaller leaf inclination compared to the wild-type, Nipponbare (WT/NIP), while overexpression lines, OE-OsPIN1b-1 and OE-OsPIN1b-2 have opposite phenotype. Further cell biological observation showed that in the adaxial region, OE-OsPIN1b-1 has significant bulge compared to WT/NIP and ospin1b-1, indicating that the increase in the adaxial cell division results in the enlarging of the leaf inclination in OE-OsPIN1b-1. The OsPIN1b was localized on the plasma membrane, and the free IAA contents in the lamina joint of ospin1b mutants were significantly increased while they were decreased in OE-OsPIN1b lines, suggesting that OsPIN1b might action an auxin transporter such as AtPIN1 to alter IAA content and leaf inclination. Furthermore, the OsPIN1b expression was induced by exogenous epibrassinolide (24-eBL) and IAA, and ospin1b mutants are insensitive to BR or IAA treatment, indicating that the effecting leaf inclination is regulated by OsPIN1b. This study contributes a new gene resource for molecular design breeding of rice architecture.

19.
Oncogene ; 42(2): 138-153, 2023 01.
Article in English | MEDLINE | ID: mdl-36396726

ABSTRACT

Circular RNAs (circRNAs) play important roles in the malignant progression of tumours. Herein, we identified an unreported circRNA (hsa-circ-0072688, also named circADAMTS6) that is specifically upregulated in the hypoxic microenvironment of glioblastoma and closely correlated with poor prognosis of gliblastoma patients. We found that circADAMTS6 promotes the malignant progression of glioblastoma by promoting cell proliferation and inhibiting apoptosis. Mechanistically, the hypoxic tumour microenvironment upregulates circADAMTS6 expression through transcription factor activator protein 1 (AP-1) and RNA-binding protein TAR DNA-binding protein 43 (TDP43). Moreover, circADAMTS6 accelerates glioblastoma progression by recruiting and stabilising annexin A2 (ANXA2) in a proteasomes-dependent manner. Furthermore, we found T-5224 (AP-1 inhibitor) treatment induces downregulation of circADAMTS6 and then inhibits tumour growth. In conclusion, our findings highlight the important role of the circADAMTS6/ANXA2 axis based on hypoxic microenvironment in glioblastoma progression, as well as its regulation in NF-κB pathway. Targeting circADAMTS6 is thus expected to become a novel therapeutic strategy for glioblastoma.


Subject(s)
Annexin A2 , Glioblastoma , MicroRNAs , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Glioblastoma/pathology , Annexin A2/genetics , Annexin A2/metabolism , Transcription Factor AP-1/genetics , RNA, Circular/genetics , Hypoxia/genetics , Cell Proliferation/genetics , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Tumor Microenvironment/genetics
20.
J Solid State Electrochem ; 27(2): 489-499, 2023.
Article in English | MEDLINE | ID: mdl-36466035

ABSTRACT

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a grave threat to human life and health, it is essential to develop an efficient and sensitive detection method to identify infected individuals. This study described an electrode platform immunosensor to detect SARS-CoV-2-specific spike receptor-binding domain (RBD) protein based on a bare gold electrode modified with Ag-rGO nanocomposites and the biotin-streptavidin interaction system. The Ag-rGO nanocomposites was obtained by chemical synthesis and characterized by electrochemistry and scanning electron microscope (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to record the electrochemical signals in the electrode modification. The differential pulse voltammetry (DPV) results showed that the limit of detection (LOD) of the immunosensor was 7.2 fg mL-1 and the linear dynamic detection range was 0.015 ~ 158.5 pg mL-1. Furthermore, this sensitive immunosensor accurately detected RBD in artificial saliva with favorable stability, specificity, and reproducibility, indicating that it has the potential to be used as a practical method for the detection of SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...