Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Neurol ; 271(2): 748-771, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010498

ABSTRACT

Epilepsy is a complex and multifaceted neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to its diverse etiology and often-refractory nature. This comprehensive review highlights the pivotal role of AMP-activated protein kinase (AMPK), a key metabolic regulator involved in cellular energy homeostasis, which may be a promising therapeutic target for epilepsy. Current therapeutic strategies such as antiseizure medication (ASMs) can alleviate seizures (up to 70%). However, 30% of epileptic patients may develop refractory epilepsy. Due to the complicated nature of refractory epilepsy, other treatment options such as ketogenic dieting, adjunctive therapy, and in limited cases, surgical interventions are employed. These therapy options are only suitable for a select group of patients and have limitations of their own. Current treatment options for epilepsy need to be improved. Emerging evidence underscores a potential association between impaired AMPK functionality in the brain and the onset of epilepsy, prompting an in-depth examination of AMPK's influence on neural excitability and ion channel regulation, both critical factors implicated in epileptic seizures. AMPK activation through agents such as metformin has shown promising antiepileptic effects in various preclinical and clinical settings. These effects are primarily mediated through the inhibition of the mTOR signaling pathway, activation of the AMPK-PI3K-c-Jun pathway, and stimulation of the PGC-1α pathway. Despite the potential of AMPK-targeted therapies, several aspects warrant further exploration, including the detailed mechanisms of AMPK's role in different brain regions, the impact of AMPK under various conditional circumstances such as neural injury and zinc toxicity, the long-term safety and efficacy of chronic metformin use in epilepsy treatment, and the potential benefits of combination therapy involving AMPK activators. Moreover, the efficacy of AMPK activators in refractory epilepsy remains an open question. This review sets the stage for further research with the aim of enhancing our understanding of the role of AMPK in epilepsy, potentially leading to the development of more effective, AMPK-targeted therapeutic strategies for this challenging and debilitating disorder.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Metformin , Humans , AMP-Activated Protein Kinases/metabolism , Drug Resistant Epilepsy/drug therapy , Metformin/therapeutic use , Epilepsy/drug therapy , Seizures/drug therapy
2.
Mol Psychiatry ; 28(9): 3955-3965, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37798418

ABSTRACT

Diabetic patients receiving the antidiabetic drug metformin have been observed to exhibit a lower prevalence of anxiety disorders, yet the precise mechanism behind this phenomenon is unclear. In our study, we found that anxiety induces a region-specific reduction in AMPK activity in the medial prefrontal cortex (mPFC). Concurrently, transgenic mice with brain-specific AMPK knockout displayed abnormal anxiety-like behaviors. Treatment with metformin or the overexpression of AMPK restored normal AMPK activity in the mPFC and mitigated social stress-induced anxiety-like behaviors. Furthermore, the specific genetic deletion of AMPK in the mPFC not only instigated anxiety in mice but also nullified the anxiolytic effects of metformin. Brain slice recordings revealed that GABAergic excitation and the resulting inhibitory inputs to mPFC pyramidal neurons were selectively diminished in stressed mice. This reduction led to an excitation-inhibition imbalance, which was effectively reversed by metformin treatment or AMPK overexpression. Moreover, the genetic deletion of AMPK in the mPFC resulted in a similar defect in GABAergic inhibitory transmission and a consequent hypo-inhibition of mPFC pyramidal neurons. We also generated a mouse model with AMPK knockout specific to GABAergic neurons. The anxiety-like behaviors in this transgenic mouse demonstrated the unique role of AMPK in the GABAergic system in relation to anxiety. Therefore, our findings suggest that the activation of AMPK in mPFC inhibitory neurons underlies the anxiolytic effects of metformin, highlighting the potential of this primary antidiabetic drug as a therapeutic option for treating anxiety disorders.


Subject(s)
Anti-Anxiety Agents , Metformin , Humans , Mice , Animals , Anti-Anxiety Agents/pharmacology , AMP-Activated Protein Kinases/pharmacology , Metformin/pharmacology , Hypoglycemic Agents/pharmacology , Prefrontal Cortex , GABAergic Neurons
3.
Front Neurosci ; 17: 1217451, 2023.
Article in English | MEDLINE | ID: mdl-37732313

ABSTRACT

Astrocytes comprise half of the cells in the central nervous system and play a critical role in maintaining metabolic homeostasis. Metabolic dysfunction in astrocytes has been indicated as the primary cause of neurological diseases, such as depression, Alzheimer's disease, and epilepsy. Although the metabolic functionalities of astrocytes are well known, their relationship to neurological disorders is poorly understood. The ways in which astrocytes regulate the metabolism of glucose, amino acids, and lipids have all been implicated in neurological diseases. Metabolism in astrocytes has also exhibited a significant influence on neuron functionality and the brain's neuro-network. In this review, we focused on metabolic processes present in astrocytes, most notably the glucose metabolic pathway, the fatty acid metabolic pathway, and the amino-acid metabolic pathway. For glucose metabolism, we focused on the glycolysis pathway, pentose-phosphate pathway, and oxidative phosphorylation pathway. In fatty acid metabolism, we followed fatty acid oxidation, ketone body metabolism, and sphingolipid metabolism. For amino acid metabolism, we summarized neurotransmitter metabolism and the serine and kynurenine metabolic pathways. This review will provide an overview of functional changes in astrocyte metabolism and provide an overall perspective of current treatment and therapy for neurological disorders.

4.
Front Med ; 17(3): 388-431, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37402952

ABSTRACT

Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/therapeutic use , Metformin/pharmacokinetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , AMP-Activated Protein Kinases/metabolism , Aging
5.
Cell Rep ; 41(11): 111798, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516780

ABSTRACT

Epileptic networks are characterized as having two states, seizures or more prolonged interictal periods. However, cellular mechanisms underlying the contribution of interictal periods to ictal events remain unclear. Here, we use an activity-dependent labeling technique combined with genetically encoded effectors to characterize and manipulate neuronal ensembles recruited by focal seizures (FS-Ens) and interictal periods (IP-Ens) in piriform cortex, a region that plays a key role in seizure generation. Ca2+ activities and histological evidence reveal a disjointed correlation between the two ensembles during FS dynamics. Optogenetic activation of FS-Ens promotes further seizure development, while IP-Ens protects against it. Interestingly, both ensembles are functionally involved in generalized seizures (GS) due to circuit rearrangement. IP-Ens bidirectionally modulates FS but not GS by controlling coherence with hippocampus. This study indicates that the interictal state may represent a seizure-preventing environment, and the interictal-activated ensemble may serve as a potential therapeutic target for epilepsy.


Subject(s)
Epilepsy , Piriform Cortex , Humans , Electroencephalography , Seizures , Neurons/physiology
6.
iScience ; 25(5): 104218, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494226

ABSTRACT

Epilepsy is a circuit-level brain disorder characterized by hyperexcitatory seizures with unclear mechanisms. Here, we investigated the causal roles of calretinin (CR) neurons in the posterior intralaminar thalamic nucleus (PIL) in hippocampal seizures. Using c-fos mapping and calcium fiber photometry, we found that PIL CR neurons were activated during hippocampal seizures in a kindling model. Optogenetic activation of PIL CR neurons accelerated seizure development, whereas inhibition retarded seizure development. Further, viral-based circuit tracing verified that PIL CR neurons were long-range glutamatergic neurons, projecting toward various downstream regions. Interestingly, selective inhibition of PIL-lateral amygdala CR circuit attenuated seizure progression, whereas inhibition of PIL-zona incerta CR circuit presented an opposite effect. These results indicated that CR neurons in the PIL play separate roles in hippocampal seizures via distinct downstream circuits, which complements the pathogenic mechanisms of epilepsy and provides new insight for the precise medicine of epilepsy.

7.
Neurosci Bull ; 38(2): 209-222, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34324145

ABSTRACT

Epilepsy is a common neurological disorder characterized by hyperexcitability in the brain. Its pathogenesis is classically associated with an imbalance of excitatory and inhibitory neurons. Calretinin (CR) is one of the three major types of calcium-binding proteins present in inhibitory GABAergic neurons. The functions of CR and its role in neural excitability are still unknown. Recent data suggest that CR neurons have diverse neurotransmitters, morphologies, distributions, and functions in different brain regions across various species. Notably, CR neurons in the hippocampus, amygdala, neocortex, and thalamus are extremely susceptible to excitotoxicity in the epileptic brain, but the causal relationship is unknown. In this review, we focus on the heterogeneous functions of CR neurons in different brain regions and their relationship with neural excitability and epilepsy. Importantly, we provide perspectives on future investigations of the role of CR neurons in epilepsy.


Subject(s)
Epilepsy , Amygdala/metabolism , Calbindin 2/metabolism , GABAergic Neurons , Hippocampus/metabolism , Humans
8.
CNS Neurosci Ther ; 27(8): 963-972, 2021 08.
Article in English | MEDLINE | ID: mdl-33955651

ABSTRACT

AIMS: Epilepsy, frequently comorbid with depression, easily develops drug resistance. Here, we investigated how dorsal raphe (DR) and its 5-HTergic neurons are implicated in epilepsy. METHODS: In mouse hippocampal kindling model, using immunochemistry, calcium fiber photometry, and optogenetics, we investigated the causal role of DR 5-HTergic neurons in seizure of temporal lobe epilepsy (TLE). Further, deep brain stimulation (DBS) of the DR with different frequencies was applied to test its effect on hippocampal seizure and depressive-like behavior. RESULTS: Number of c-fos+ neurons in the DR and calcium activities of DR 5-HTergic neurons were both increased during kindling-induced hippocampal seizures. Optogenetic inhibition, but not activation, of DR 5-HTergic neurons conspicuously retarded seizure acquisition specially during the late period. For clinical translation, 1-Hz-specific, but not 20-Hz or 100-Hz, DBS of the DR retarded the acquisition of hippocampal seizure. This therapeutic effect may be mediated by the inhibition of DR 5-HTergic neurons, as optogenetic activation of DR 5-HTergic neurons reversed the anti-seizure effects of 1-Hz DR DBS. However, DBS treatment had no effect on depressive-like behavior. CONCLUSION: Inhibition of hyperactivity of DR 5-HTergic neuron may present promising anti-seizure effect and the DR may be a potential DBS target for the therapy of TLE.


Subject(s)
Deep Brain Stimulation/methods , Dorsal Raphe Nucleus/metabolism , Hippocampus/metabolism , Neural Inhibition/physiology , Seizures/metabolism , Serotonergic Neurons/metabolism , Animals , Dorsal Raphe Nucleus/chemistry , Hippocampus/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Seizures/therapy , Serotonergic Neurons/chemistry
9.
Biol Psychiatry ; 87(9): 843-856, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31987494

ABSTRACT

BACKGROUND: Previous studies indicated the involvement of cholinergic neurons in seizure; however, the specific role of the medial septum (MS)-hippocampus cholinergic circuit in temporal lobe epilepsy (TLE) has not yet been completely elucidated. METHODS: In the current study, we used magnetic resonance imaging and diffusion tensor imaging to characterize the pathological change of the MS-hippocampus circuit in 42 patients with TLE compared with 22 healthy volunteers. Using optogenetics and chemogenetics, combined with in vivo or in vitro electrophysiology and retrograde rabies virus tracing, we revealed a direct MS-hippocampus cholinergic circuit that potently attenuates seizure through driving somatostatin inhibition in animal TLE models. RESULTS: We found that patients with TLE with hippocampal sclerosis showed a decrease of neuronal fiber connectivity of the MS-hippocampus compared with healthy people. In the mouse TLE model, MS cholinergic neurons ceased firing during hippocampal seizures. Optogenetic and chemogenetic activation of MS cholinergic neurons (but not glutamatergic or GABAergic [gamma-aminobutyric acidergic] neurons) significantly attenuated hippocampal seizures, while specific inhibition promoted hippocampal seizures. Electrophysiology combined with modified rabies virus tracing studies showed that direct (but not indirect) MS-hippocampal cholinergic projections mediated the antiseizure effect by preferentially targeting hippocampal GABAergic neurons. Furthermore, chemogenetic inhibition of hippocampal somatostatin-positive (rather than parvalbumin-positive) subtype of GABAergic neurons reversed the antiseizure effect of the MS-hippocampus cholinergic circuit, which was mimicked by activating somatostatin-positive neurons. CONCLUSIONS: These findings underscore the notable antiseizure role of the direct cholinergic MS-hippocampus circuit in TLE through driving the downstream somatostatin effector. This may provide a better understanding of the changes of the seizure circuit and the precise spatiotemporal control of epilepsy.


Subject(s)
Diffusion Tensor Imaging , Somatostatin , Animals , Cholinergic Agents , Hippocampus/metabolism , Humans , Mice , Seizures , Somatostatin/metabolism
10.
Sci Rep ; 7(1): 4398, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28667287

ABSTRACT

We developed an efficient synthesis of aza-chromones from 3-iodo-4-(1H)-pyridones and terminal acetylenes via a cascade carbonylation-Sonogashira-cyclization reaction. By controlling the use of bases, both 6-aza-chromones 5 and 3-(4-oxo-1,4-dihydroquinoline-3-carbonyl)-4H-pyrano[3,2-c]quinolin-4-ones 6 could be selectively obtained in moderate to good yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...