Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Neuropharmacology ; 238: 109669, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37473999

ABSTRACT

Depression is a complex psychiatric disorder. Previous studies have shown that running exercise reverses depression-like behavior faster and more effectively than fluoxetine therapy. GABAergic interneurons, including the PV+ interneuron subtype, in the medial prefrontal cortex (MPFC) are involved in pathological changes of depression. It was unknown whether running exercise and fluoxetine therapy reverse depression-like behavior via GABAergic interneurons or the PV+ interneurons subtype in MPFC. To address this issue, we subjected mice with chronic unpredictable stress (CUS) to a 4-week running exercise or fluoxetine therapy. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that running exercise enriched GABAergic synaptic pathways in the MPFC of CUS-exposed mice. However, the number of PV+ interneurons but not the total number of GABAergic interneurons in the MPFC of CUS-exposed mice reversed by running exercise, not fluoxetine therapy. Running exercise increased the relative gene expression levels of the PV gene in the MPFC of CUS-exposed mice without altering other subtypes of GABAergic interneurons. Moreover, running exercise and fluoxetine therapy both significantly improved the length, area and volume of dendrites and the spine morphology of PV+ interneurons in the MPFC of mice exposed to CUS. However, running exercise but not fluoxetine therapy improved the dendritic complexity level of PV+ interneurons in the MPFC of CUS-exposed mice. In summary, the number and dendritic complexity level of PV+ interneurons may be important therapeutic targets for the mechanism by which running exercise reverses depression-like behavior faster and more effectively than fluoxetine therapy.


Subject(s)
Fluoxetine , Running , Mice , Animals , Fluoxetine/pharmacology , Fluoxetine/metabolism , Antidepressive Agents/pharmacology , Interneurons , Prefrontal Cortex
3.
Transl Neurosci ; 13(1): 379-389, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-36348956

ABSTRACT

N-Methyl-d-aspartate receptor (NMDAR) signaling pathway has been implicated in the pathogenesis and treatment of depression. However, the role of NMDAR subunits in depression is still unclear. In this study, alteration in all seven NMDAR subunits in several brain areas of rats exposed to chronic unpredictable mild stress (CUMS), an animal model of depression, was detected. Our findings demonstrated that: (1) CUMS could induce a reduction in sucrose preference, an indicator of typical depression-like behaviors; (2) CUMS significantly reduced the NMDAR subunits of GluN2B and GluN3 in the medial prefrontal cortex (mPFC), but not altered all seven NMDAR subunits in hippocampus and corpus callosum of rats; (3) subunit composition of NMDARs in corpus callosum was different from that in mPFC, PFC and hippocampus; and (4) the mRNA expressions of GluN2B, GluN3A and GluN3B in mPFC as well as mRNA expression of GluN2C in corpus callosum were correlated to sucrose preference in rats. These findings suggested that GluN2B and GluN3 in mPFC may contribute to the pathophysiology of depression.

4.
Dis Markers ; 2022: 8708312, 2022.
Article in English | MEDLINE | ID: mdl-36426134

ABSTRACT

The tsRNAs (tRNA-derived small RNAs) are new types of small noncoding RNAs derived from tRNAs. Gliomas are well-known malignant brain tumors. The study focused on tsRNA characterizations within gliomas. Datasets processing, bioinformatics analyses, and visualizations were performed with the packages of Python and R. Cell proliferations were demonstrated via CCK8 assays and colony formation assays, and in vivo xenograft experiments. Dual-luciferase reporter assay was performed to confirm the binding of tsRNA with its targets. Via using bioinformatics approaches, the hundreds of tsRNAs with available expression abundance were identified in gliomas dataset, most of them derived from D-loop or T-loop fragments of tRNAs. Among tsRNAs derived from tRNA-Cys-GCA, tRFdb-3003a and tRFdb-3003b (tRFdb-3003a/b) were remarkably down-regulated in gliomas. The survival outcome of gliomas patients with low tRFdb-3003a/b expressions was notably worse than that of high-expression patients. In glioma cells, tRFdb-3003a could suppress cells proliferation and colony formation ability. In vivo, tRFdb-3003a suppressed the tumor growth of xenograft gliomas. Enrichment analyses displayed the tRFdb-3003a-related mRNAs were enriched in the specific GO terms, spliceosome and autophagy pathways, and three GSEA molecular signatures. Mechanically, 3'-UTR regions of VAV2 mRNA were predicted to contain the binding positions of tRFdb-3003a/b, tRFdb-3003a and tRFdb-3003b was effective to reduce the relative luciferase activity of cells with VAV2 wild-type reporter. Overexpression of tRFdb-3003a/b could down-regulated the expression levels of VAV2 protein and mRNA in glioma cells. The tRNA-Cys-GCA derived tRFdb-3003a and tRFdb-3003b might act as key player in tumor progressions of gliomas; tRFdb-3003a/b might directly bind to VAV2 and regulate VAV2 expressions in gliomas.


Subject(s)
Glioma , MicroRNAs , RNA, Small Untranslated , Humans , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Small Untranslated/genetics , Glioma/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism
5.
Front Pharmacol ; 13: 936045, 2022.
Article in English | MEDLINE | ID: mdl-35959443

ABSTRACT

Depression is a complex disorder that is associated with various structural abnormalities. Oligodendrocyte (OL) dysfunction is associated with the pathogenesis of depression and the promotion of hippocampal oligodendrocyte maturation and myelination could be a novel therapeutic strategy for ameliorating depressive behaviors. Recent studies have shown that activation of liver X receptors (LXRs) by GW3965 improves depressive phenotypes, but the effects of GW3965 on OL function and myelination in the hippocampus of depression remain relatively unclear. To address this issue, we investigated the effects of GW3965 on mature OL in the hippocampus and on the myelin sheaths of mice subjected to chronic unpredictable stress (CUS). Behavioral tests were performed to assess depressive behaviors. Then, the number of mature OLs (CC1+) in each hippocampal subregion was precisely quantified with immunohistochemical and stereological methods, and the density of newborn mature OLs (BrdU+/Olig2+/CC1+ cells) in each hippocampal subregion was quantified with immunofluorescence. In addition, myelin basic protein (MBP) staining intensity in the cornu ammonis 3 (CA3) region was assessed by using immunofluorescence. We found that both the number of CC1+ OLs and the density of BrdU+/Olig2+/CC1+ cells were obviously decreased in each hippocampal subregion of mice subjected to CUS, and 4 weeks of GW3965 treatment reversed these effects only in the CA3 region. Furthermore, the decreased MBP expression in the CA3 region of mice subjected to CUS was ameliorated by GW3965 treatment. Collectively, these results suggested that improvement of OL maturation and enhancement of myelination may be structural mechanisms underlying the antidepressant effects of LXR agonists.

6.
Exp Neurol ; 354: 114103, 2022 08.
Article in English | MEDLINE | ID: mdl-35525307

ABSTRACT

Depression, a common and important cause of morbidity and mortality worldwide, is commonly treated with antidepressants, electric shock and psychotherapy. Recently, increasing evidence has shown that exercise can effectively alleviate depression. To determine the difference in efficacy between exercise and the classic antidepressant fluoxetine in treating depression, we established four groups: the Control, chronic unpredictable stress (CUS/STD), running (CUS/RUN) and fluoxetine (CUS/FLX) groups. The sucrose preference test (SPT), the forced swimming test (FST), the tail suspension test (TST), immunohistochemistry, immunofluorescence and stereological analyses were used to clarify the difference in therapeutic efficacy and mechanism between exercise and fluoxetine in the treatment of depression. In the seventh week, the sucrose preference of the CUS/RUN group was significantly higher than that of the CUS/STD group, while the sucrose preference of the CUS/FLX group did not differ from that of the CUS/STD group until the eighth week. Exercise reduced the immobility time in the FST and TST, while fluoxetine only reduced immobility time in the TST. Hippocampal structure analysis showed that the CUS/STD group exhibited an increase in immature neurons and a decrease in mature neurons. Exercise reduced the number of immature neurons and increased the number of mature neurons, but no increase in the number of mature neurons was observed after fluoxetine treatment. In addition, both running and fluoxetine reversed the decrease in the number of MAP2+ dendrites in depressed mice. Exercise increased the number of spinophilin-positive (Sp+) dendritic spines in the hippocampal CA1, CA3, and dentate gyrus (DG) regions, whereas fluoxetine only increased the number of SP+ spines in the DG. In summary, exercise promoted newborn neuron maturation in the DG and regulated neuronal plasticity in three hippocampal subregions, which might explain why running exerts earlier and more comprehensive antidepressant effects than fluoxetine.


Subject(s)
Fluoxetine , Sexually Transmitted Diseases , Animals , Mice , Rats , Antidepressive Agents/pharmacology , Depression/drug therapy , Depression/etiology , Disease Models, Animal , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Hippocampus , Neuronal Plasticity , Neurons , Rats, Sprague-Dawley , Sexually Transmitted Diseases/drug therapy , Stress, Psychological/drug therapy , Sucrose/pharmacology
7.
Front Behav Neurosci ; 16: 811419, 2022.
Article in English | MEDLINE | ID: mdl-35493949

ABSTRACT

Background: Clinical and animal studies have shown that transcutaneous auricular vagus nerve stimulation (ta-VNS) exerts neuroprotection following cerebral ischemia. Studies have revealed that white matter damage after ischemia is related to swallowing defects, and the degree of white matter damage is related to the severity of dysphagia. However, the effect of ta-VNS on dysphagia symptoms and white matter damage in dysphagic animals after an ischemic stroke has not been investigated. Methods: Middle cerebral artery occlusion (MCAO) rats were randomly divided into the sham, control and vagus nerve stimulation (VNS) group, which subsequently received ta-VNS for 3 weeks. The swallowing reflex was measured once weekly by electromyography (EMG). White matter remyelination, volume, angiogenesis and the inflammatory response in the white matter were assessed by electron microscopy, immunohistochemistry, stereology, enzyme-linked immunosorbent assay (ELISA) and Western blotting. Results: ta-VNS significantly increased the number of swallows within 20 s and reduced the onset latency to the first swallow. ta-VNS significantly improved remyelination but did not alleviate white matter shrinkage after MCAO. Stereology revealed that ta-VNS significantly increased the density of capillaries and increased vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF2) expression in the white matter. ta-VNS significantly alleviated the increase inTLR4, MyD88, phosphorylated MAPK and NF-κB protein levels and suppressed the expression of the proinflammatory factors IL-1ß and TNF-α. Conclusion: These results indicated ta-VNS slightly improved dysphagia symptoms after ischemic stroke, possibly by increasing remyelination, inducing angiogenesis, and inhibiting the inflammatory response in the white matter of cerebral ischaemia model rats, implying that ta-VNS may be an effective therapeutic strategy for the treatment of dysphagia after ischemic stroke.

8.
Transl Psychiatry ; 11(1): 622, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880203

ABSTRACT

Although selective serotonin reuptake inhibitor (SSRI) systems have been meaningfully linked to the clinical phenomena of mood disorders, 15-35% of patients do not respond to multiple SSRI interventions or even experience an exacerbation of their condition. As we previously showed, both running exercise and fluoxetine reversed depression-like behavior. However, whether exercise reverses depression-like behavior more quickly than fluoxetine treatment and whether this rapid effect is achieved via the promotion of oligodendrocyte differentiation and/or myelination in the hippocampus was previously unknown. Sixty male C57BL/6 J mice were used in the present study. We subjected mice with unpredictable chronic stress (UCS) to a 4-week running exercise trial (UCS + RN) or intraperitoneally injected them with fluoxetine (UCS + FLX) to address these uncertainties. At the behavioral level, mice in the UCS + RN group consumed significantly more sugar water in the sucrose preference test (SPT) at the end of the 7th week than those in the UCS group, while those in the UCS + FLX group consumed significantly more sugar water than mice in the UCS group at the end of the 8th week. The unbiased stereological results and immunofluorescence analyses revealed that running exercise, and not fluoxetine treatment, increased the numbers of CC1+ and CC1+/Olig2+/BrdU+ oligodendrocytes in the CA1 subfield in depressed mice exposed to UCS. Moreover, running exercise rather than fluoxetine increased the level of myelin basic protein (MBP) and the G-ratio of myelinated nerve fibers in the CA1 subfield in the UCS mouse model. Unlike fluoxetine, exercise promoted hippocampal myelination and oligodendrocyte differentiation and thus has potential as a therapeutic strategy to reduce depression-like behaviors induced by UCS.


Subject(s)
Depression , Fluoxetine , Animals , Depression/drug therapy , Disease Models, Animal , Fluoxetine/pharmacology , Hippocampus , Humans , Male , Mice , Mice, Inbred C57BL , Oligodendroglia , Selective Serotonin Reuptake Inhibitors/pharmacology , Stress, Psychological
9.
Transl Psychiatry ; 11(1): 461, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489395

ABSTRACT

Running exercise has been shown to relieve symptoms of depression, but the mechanisms underlying the antidepressant effects are unclear. Microglia and concomitant dysregulated neuroinflammation play a pivotal role in the pathogenesis of depression. However, the effects of running exercise on hippocampal neuroinflammation and the number and activation of microglia in depression have not been studied. In this study, rats were subjected to chronic unpredictable stress (CUS) for 5 weeks followed by treadmill running for 6 weeks. The depressive-like symptoms of the rats were assessed with a sucrose preference test (SPT). Immunohistochemistry and stereology were performed to quantify the total number of ionized calcium-binding adapter molecule 1 (Iba1)+ microglia, and immunofluorescence was used to quantify the density of Iba1+/cluster of differentiation 68 (CD68)+ in subregions of the hippocampus. The levels of proinflammatory cytokines in the hippocampus were measured by qRT-PCR and ELISA. The results showed that running exercise reversed the decreased sucrose preference of rats with CUS-induced depression. In addition, CUS increased the number of hippocampal microglia and microglial activation in rats, but running exercise attenuated the CUS-induced increases in the number of microglia in the hippocampus and microglial activation in the dentate gyrus (DG) of the hippocampus. Furthermore, CUS significantly increased the hippocampal levels of inflammatory factors, and the increases in inflammatory factors in the hippocampus were suppressed by running exercise. These results suggest that the antidepressant effects of exercise may be mediated by reducing the number of microglia and inhibiting microglial activation and neuroinflammation in the hippocampus.


Subject(s)
Depression , Microglia , Animals , Antidepressive Agents , Depression/therapy , Disease Models, Animal , Hippocampus , Rats , Stress, Psychological
10.
J Comp Neurol ; 529(7): 1571-1583, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32965038

ABSTRACT

Chronic stress can induce cognitive impairment, and synapse number was significantly decreased in the hippocampus of rats suffering from chronic stress. Lingo-1 is a potent negative regulator of axonal outgrowth and synaptic plasticity. In the current study, the effects of anti-Lingo-1 antibody on the spatial learning and memory abilities and hippocampal synapses of stressed rats were investigated. After 4 weeks of stress exposure, the model group was randomly divided into a chronic stress group and an anti-Lingo-1 group. Then, the anti-Lingo-1 group rats were treated with anti-Lingo-1 antibody (8 mg/kg) for 3 weeks. The effects of anti-Lingo-1 antibody on the spatial learning and memory abilities were investigated with the Morris water maze test. Immunohistological staining and an unbiased stereological method were used to estimate the total number of dendritic spine synapses in the hippocampus. At the behavioral level, after 3 weeks of treatment, the anti-Lingo-1 group rats displayed significantly more platform location crossings in the Morris water maze test than the chronic stress group rats. Anti-Lingo-1 significantly prevented the declines in dendritic spine synapses and postsynaptic density protein-95 (PSD-95) expression in the dentate gyrus and the CA1 and CA3 regions of the hippocampus. The present results indicated that anti-Lingo-1 antibody may be a safe and effective drug for alleviating memory impairment in rats after chronic stress and protecting synapses in the hippocampus of stressed rats.


Subject(s)
Membrane Proteins/antagonists & inhibitors , Nerve Tissue Proteins/antagonists & inhibitors , Spatial Memory/physiology , Stress, Psychological/complications , Synapses/pathology , Animals , Antibodies/pharmacology , Hippocampus/drug effects , Hippocampus/pathology , Male , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Rats , Rats, Sprague-Dawley , Spatial Memory/drug effects , Synapses/drug effects
11.
Int J Sports Med ; 41(13): 951-961, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32643775

ABSTRACT

Exercise has been argued to improve cognitive function in both humans and rodents. Angiogenesis significantly contributes to brain health, including cognition. The hippocampus is a crucial brain region for cognitive function. However, studies quantifying the capillary changes in the hippocampus after running exercise are lacking. Moreover, the molecular details underlying the effects of running exercise remain poorly understood. We show that endogenous nitric oxide contributes to the beneficial effects of running exercise on cognition and hippocampal capillaries. Four weeks of running exercise significantly improved spatial memory ability and increased the number of capillaries in the cornu ammonis 1 subfield and dentate gyrus of Sprague-Dawley rats. Running exercise also significantly increased nitric oxide synthase activity and nitric oxide content in the rat hippocampus. After blocking the synthesis of endogenous nitric oxide by lateral ventricular injection of NG-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase inhibitor, the protective effect of running exercise on spatial memory was eliminated. The protective effect of running exercise on angiogenesis in the cornu ammonis 1 subfield and dentate gyrus of rats was also absent after nitric oxide synthase inhibition. Therefore, during running excise, endogenous nitric oxide may contribute to regulating spatial memory ability and angiogenesis in cornu ammonis 1 subfield and dentate gyrus of the hippocampus.


Subject(s)
CA1 Region, Hippocampal/blood supply , Capillaries/physiology , Dentate Gyrus/blood supply , Neovascularization, Physiologic , Nitric Oxide/physiology , Physical Conditioning, Animal/physiology , Spatial Memory/physiology , Animals , CA1 Region, Hippocampal/enzymology , Dentate Gyrus/enzymology , Male , Maze Learning/physiology , Nitric Oxide Synthase/metabolism , Rats, Sprague-Dawley , Running/physiology
12.
Behav Brain Res ; 393: 112765, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32535182

ABSTRACT

Chronic exposure to stressful conditions may affect spatial learning and memory abilities and the brain structure, and disruptions in oligodendrocyte function may cause cognitive dysfunction. Leucine-rich repeat and immunoglobulin-like domain-containing protein 1 (LINGO-1) is a potent negative regulator of oligodendrocytes and axon myelination. However, the questions we sought to answer in this study are whether hippocampal oligodendrocytes are involved in the pathological process of spatial learning and memory impairments induced by chronic stress (CS) and whether antibodies targeting LINGO-1 improve stress-induced spatial learning and memory impairments by protecting the hippocampal oligodendrocytes in stressed rats. After 4 weeks of CS, rats were randomly divided into either the CS standard group or anti-LINGO-1 group. The anti-LINGO-1 group was treated with an anti-LINGO-1 antibody (8 mg/kg) for 3 weeks; all rats were assessed in the Morris water maze. Immunohistochemical staining and modern stereological methods were used to precisely quantify the total number of 2',3'-cyclic nucleotide 3'-phosphodiesterase-positive (CNPase+) oligodendrocytes in each subregion of the hippocampus. At the behavioural level, after three weeks of treatment, the anti-LINGO-1 group displayed significantly more platform crossings in the Morris water maze test than the CS standard group. The total swimming distance and swimming speed were not significantly different. In the open field test, the percentage of distance travelled in the central region did not differ between the CS standard group and control group or between the anti-LINGO-1 group and the CS standard group. Unbiased stereological analyses revealed significantly greater total numbers of CNPase+ cells in the CA3 and dentate gyrus (DG) areas of the hippocampus in the anti-LINGO-1 group than in the CS standard group. A significant difference in the total number of CNPase+ cells was not observed in the hippocampal CA1 region between the anti-LINGO-1 and CS standard groups. Based on the results of the present study, the anti-LINGO-1 antibody alleviated spatial memory impairments and protected oligodendrocytes in the hippocampus of chronically stressed rats.


Subject(s)
Antibodies/therapeutic use , Hippocampus/drug effects , Membrane Proteins/immunology , Memory Disorders/drug therapy , Nerve Tissue Proteins/immunology , Oligodendroglia/drug effects , Spatial Memory/drug effects , Stress, Psychological/drug therapy , Animals , Antibodies/pharmacology , Hippocampus/pathology , Male , Memory Disorders/pathology , Oligodendroglia/pathology , Rats , Rats, Sprague-Dawley , Stress, Psychological/pathology , Treatment Outcome
13.
J Comp Neurol ; 528(15): 2583-2594, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32246847

ABSTRACT

Depression is a mental illness which is harmful seriously to the society. This study investigated the effects of fluoxetine on the CNPase+ oligodendrocytes in hippocampus of the depressed rats to explore the new target structure of antidepressants. Male Sprague-Dawley rats were used to build chronic unpredictable stress (CUS) depressed model of rats. Then, the depressed rats were divided into the CUS standard group and the CUS + fluoxetine (CUS/FLX) group. The CUS/FLX group was treated with fluoxetine at dose of 5 mg/(kg·d) from the fifth week to seventh week. After 7 weeks CUS intervention, the sucrose preference of the CUS standard group was significantly lower than that of the control group and the CUS/FLX group. The stereological results showed that the total number of the CNPase+ cells in the CA1, CA3, and DG subfield of the hippocampus in the CUS standard group were significantly decreased, when compared with the CNPase+ cells in the control group. However, the total number of the CNPase+ cells in the CA1 and CA3 subfield of the hippocampus in the CUS standard group was significantly decreased when it compared with CNPase+ cells in the CUS/FLX group. Therefore, fluoxetine might prevent the loss of CNPase+ oligodendrocytes in CA1 and CA3 subfields of hippocampus of the depressed rats. The oligodendrocytes in hippocampus may play an important role in the pathogenesis of depression. The current result might provide structural basis for the future studies that search for new antidepressant strategies.


Subject(s)
Antidepressive Agents, Second-Generation/therapeutic use , Depression/drug therapy , Fluoxetine/therapeutic use , Hippocampus/drug effects , Oligodendroglia/drug effects , Stress, Psychological/drug therapy , 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism , Animals , Antidepressive Agents, Second-Generation/pharmacology , Depression/enzymology , Depression/psychology , Fluoxetine/pharmacology , Hippocampus/enzymology , Male , Oligodendroglia/enzymology , Rats , Rats, Sprague-Dawley , Stress, Psychological/enzymology , Stress, Psychological/psychology
14.
Neurobiol Dis ; 136: 104723, 2020 03.
Article in English | MEDLINE | ID: mdl-31887353

ABSTRACT

BACKGROUND: Previous studies have reported that exercise could improve the plasticity of hippocampal synapses. However, the effects of exercise on synapses in the hippocampus in Alzheimer's disease (AD) are not completely known. METHODS: In this study, thirty 12-month-old male APP/PS1 double transgenic mice were randomly divided into a sedentary group (n = 15) and a running group (n = 15). Fifteen 12-month-old male wild-type littermates were assigned to the control group (n = 15). While running mice were assigned to treadmill running for four months, the control mice and sedentary mice did not run during the study period. After Morris water maze testing, five mice in each group were randomly selected for a stereological assessment of spinophilin-immunoreactive puncta in the CA1, CA2-3 and dentate gyrus (DG) of the hippocampus. RESULTS: Morris water maze testing revealed that while the learning and memory abilities in sedentary APP/PS1 mice were significantly worse than those in wild-type control mice, the learning and memory abilities in running APP/PS1 mice were significantly better than those in sedentary APP/PS1 mice. The stereological results showed that the spinophilin-immunoreactive puncta numbers of the CA1, CA2-3 and DG in the hippocampus of sedentary APP/PS1 mice were significantly lower than those of wild-type control mice and that the numbers of these spines in the CA1, CA2-3 and DG in the hippocampus of running APP/PS1 mice were significantly higher than those of sedentary APP/PS1 mice. Moreover, a running-induced improvement in spatial learning and memory abilities was significantly correlated with running-induced increases in the spinophilin-immunoreactive puncta numbers in the CA1 and DG of the hippocampus. CONCLUSIONS: Four-month treadmill exercise induced a significant improvement in spatial learning and memory abilities and a significant increase in the number of spinophilin-immunoreactive puncta of the CA1, CA2-3 and DG in the hippocampus of APP/PS1 mice. Running-induced improvements in spatial learning and memory abilities were significantly correlated with running-induced increases in the spinophilin-immunoreactive puncta numbers in the CA1 and DG of the hippocampus.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Hippocampus/metabolism , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Physical Conditioning, Animal/physiology , Presenilin-1/genetics , Spatial Learning/physiology , Spatial Memory/physiology , Animals , Male , Maze Learning/physiology , Mice , Mice, Transgenic , Microfilament Proteins/deficiency , Nerve Tissue Proteins/deficiency , Physical Conditioning, Animal/trends , Random Allocation , Time Factors
15.
Transl Psychiatry ; 9(1): 322, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780641

ABSTRACT

Previous postmortem and animal studies have shown decreases in the prefrontal cortex (PFC) volume and the number of glial cells in the PFC of depression. Running exercise has been shown to alleviate depressive symptoms. However, the effects of running exercise on the medial prefrontal cortex (mPFC) volume and oligodendrocytes in the mPFC of depressed patients and animals have not been investigated. To address these issues, adult male rats were subjected to chronic unpredictable stress (CUS) for 5 weeks, followed by treadmill running for 6 weeks. Then, the mPFC volume and the mPFC oligodendrocytes were investigated using stereology, immunohistochemistry, immunofluorescence and western blotting. Using a CUS paradigm that allowed for the analysis of anhedonia, we found that running exercise alleviated the deficits in sucrose preference, as well as the decrease in the mPFC volume. Meanwhile, we found that running exercise significantly increased the number of CNPase+ oligodendrocytes and Olig2+ oligodendrocytes, reduced the ratio between Olig2+/NG2+ oligodendrocytes and Olig2+ oligodendrocytes and increased myelin basic protein (MBP), CNPase and Olig2 protein expression in the mPFC of the CUS rat model. However, running exercise did not change NG2+ oligodendrocyte number in the mPFC in these rats. These results indicated that running exercise promoted the differentiation of oligodendrocytes and myelin-forming ability in the mPFC in the context of depression. These findings suggest that the beneficial effects of running exercise on mPFC volume and oligodendrocytes in mPFC might be an important structural basis for the antidepressant effects of running exercise.


Subject(s)
Depression , Oligodendroglia , Physical Conditioning, Animal/physiology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Running/physiology , Stress, Psychological , Animals , Behavior, Animal/physiology , Depression/etiology , Depression/metabolism , Depression/pathology , Depression/therapy , Disease Models, Animal , Male , Oligodendroglia/cytology , Oligodendroglia/metabolism , Prefrontal Cortex/cytology , Rats , Rats, Sprague-Dawley , Stress, Psychological/complications , Stress, Psychological/metabolism , Stress, Psychological/pathology , Stress, Psychological/therapy
16.
Behav Brain Res ; 374: 112115, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31369775

ABSTRACT

Exercise has been considered for the treatment of depression, but the mechanism by which exercise improves depression is still unclear. To clarify the mechanism, rats were randomly divided into the control, chronic unpredictable stress (CUS)/standard and CUS/running groups. The rats in the CUS/running group ran for four weeks. In this study, a sucrose preference test (SPT) was used to evaluate the depression-like symptoms in the rats, and western blot, immunohistochemical and stereological analyses were performed to study the expression of synaptic-related proteins in the hippocampus and the changes in excitatory synapses in each sub-region. The results show that sucrose preference in the CUS/standard group was significantly lower than that in the control group, but in the CUS/running group, sucrose preference was higher than that in the CUS/standard group. Surprisingly, there was no difference in the synaptic-related proteins in the hippocampus among groups. The CUS/standard group exhibited fewer spinophilin+ (Sp+) dendritic spines representing excitatory synapses in CA1, CA3 and dentate gyrus (DG) of the hippocampus than the control group, whereas the CUS/running group exhibited significantly more Sp+ dendritic spines in these regions than the CUS/standard group, indicating that excitatory synapses were reduced in depressed rats and that running exercises could reverse this change. We hypothesize that the changes in the number of excitatory synapses better reflect the changes in depressive symptoms than the level of synaptic proteins and that the effect of exercise on excitatory synapses in the sub-regions of the hippocampus may be an important structural indicator of the improvement of depressive symptoms.


Subject(s)
Depression/therapy , Hippocampus/metabolism , Physical Conditioning, Animal/physiology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Depression/metabolism , Depressive Disorder/metabolism , Depressive Disorder/therapy , Disease Models, Animal , Exercise Therapy/methods , Exploratory Behavior , Male , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Rats , Rats, Sprague-Dawley , Stress, Psychological/metabolism , Synapses/metabolism , Synapses/physiology
17.
Brain Res Bull ; 149: 1-10, 2019 07.
Article in English | MEDLINE | ID: mdl-30954528

ABSTRACT

Running exercise has been shown to be associated with decreased symptoms of depression. However, the mechanisms underlying these antidepressant effects of running exercise remain relatively unclear. In the current study, we investigated the relationship between depressive symptoms in chronic unpredictable stress (CUS) model rats treated with running exercise and changes in oligodendrocytes in the hippocampus. After 4 weeks of CUS, the model group was randomly divided into a CUS standard group (18 rats) and a CUS running group (15 rats). Then, a 4-week treadmill running trial was performed with the CUS running group. In addition, the behavioral effects of exercise were investigated by means of a sucrose preference test (SPT) and an at the end of the 8th week. Immunohistochemical methods and modern stereological methods were used to precisely quantify the total number of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)-positive (CNPase+) oligodendrocytes in each hippocampal subregion. At the behavioral level, after four weeks of running, the CUS running group displayed significantly higher consumption of sucrose water in the SPT than the CUS standard group. Unbiased stereological analyses revealed significantly higher total numbers of CNPase+ cells in the hippocampal CA3 and dentate gyrus regions in the CUS running group than in the CUS standard group, whereas there was no significant difference between the groups in the number of CNPase+ cells in the hippocampal CA1 region. The present results further confirm that exercise can alleviate symptoms and protect hippocampal oligodendrocytes in depressed rats.


Subject(s)
Depression/therapy , Oligodendroglia/metabolism , Physical Exertion/physiology , Animals , Antidepressive Agents/metabolism , Brain/metabolism , CA1 Region, Hippocampal/metabolism , Dentate Gyrus/metabolism , Depression/metabolism , Depression/physiopathology , Depressive Disorder/metabolism , Depressive Disorder/physiopathology , Disease Models, Animal , Exercise Therapy/methods , Hippocampus/metabolism , Male , Physical Conditioning, Animal/methods , Rats , Rats, Sprague-Dawley , Running/physiology , Stress, Psychological/complications , Temporal Lobe/metabolism
18.
Neurosci Lett ; 694: 104-110, 2019 02 16.
Article in English | MEDLINE | ID: mdl-30423401

ABSTRACT

OBJECTIVE: To explore the pathogenesis of depression and the possible mechanism of the effects of selective serotonin reuptake inhibitors (SSRIs) on the myelinated fibers and myelin sheaths in the white matter during the antidepressant action of fluoxetine. METHODS: In this study, Sprague Dawley (SD) rats were divided into a Control group, a group treated with CUS and no drugs (CUS/Standard group) and a group treated with CUS and fluoxetine (CUS/FLX group). The CUS/FLX group was treated with fluoxetine at dose of 5 mg/kg for 21 days. The white matter volume, the myelinated fiber parameters and the myelin sheath volume in the white matter were calculated from transmission electron microscope images through unbiased stereological methods. RESULTS: The total volume and total length of myelinated fibers;and mean volume of white matter of the CUS/Standard group were significantly decreased compared to values from the control group (p = 0.025, p = 0.007, p = 0.000), whereas no significant differences in these stereological parameters were found between the CUS/Standard and CUS/FLX groups (p > 0.05). CONCLUSIONS: Fluoxetine successfully treated depression-like behavior but had no effects on the white matter or its component myelinated fibers in the CUS rat model of depression.


Subject(s)
Antidepressive Agents, Second-Generation/administration & dosage , Depression/drug therapy , Depression/pathology , Fluoxetine/administration & dosage , Selective Serotonin Reuptake Inhibitors/administration & dosage , White Matter/drug effects , White Matter/ultrastructure , Animals , Depression/etiology , Disease Models, Animal , Male , Myelin Sheath/drug effects , Myelin Sheath/ultrastructure , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Myelinated/ultrastructure , Rats, Sprague-Dawley , Stress, Psychological/complications
19.
J Alzheimers Dis ; 63(2): 689-703, 2018.
Article in English | MEDLINE | ID: mdl-29689723

ABSTRACT

The risk of cognitive decline during Alzheimer's disease (AD) can be reduced if physical activity is maintained; however, the specific neural events underlying this beneficial effect are still uncertain. To quantitatively investigate the neural events underlying the effect of running exercise on middle-aged AD subjects, 12-month-old male APP/PS1 mice were randomly assigned to a control group or running group, and age-matched non-transgenic littermates were used as a wild-type group. AD running group mice were subjected to a treadmill running protocol (regular and moderate intensity) for four months. Spatial learning and memory abilities were assessed using the Morris water maze. Hippocampal amyloid plaques were observed using Thioflavin S staining and immunohistochemistry. Hippocampal volume, number of neurons, and number of newborn cells (BrdU+ cells) in the hippocampus were estimated using stereological techniques, and newborn neurons were observed using double-labelling immunofluorescence. Marked neuronal loss in both the CA1 field and dentate gyrus (DG) and deficits in both the neurogenesis and survival of new neurons in the DG of middle-aged APP/PS1 mice were observed. Running exercise could improve the spatial learning and memory abilities, reduce amyloid plaques in the hippocampi, delay neuronal loss, induce neurogenesis, and promote the survival of newborn neurons in the DG of middle-aged APP/PS1 mice. Exercise-induced protection of neurons and adult neurogenesis within the DG might be part of the important structural basis of the improved spatial learning and memory abilities observed in AD mice.


Subject(s)
Aging/pathology , Hippocampus/pathology , Neurons/pathology , Running , Aging/physiology , Aging/psychology , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Alzheimer Disease/prevention & control , Alzheimer Disease/psychology , Animals , Cell Count , Cell Survival/physiology , Hippocampus/physiopathology , Male , Maze Learning/physiology , Mice, Transgenic , Neurogenesis/physiology , Neurons/physiology , Organ Size , Plaque, Amyloid/pathology , Plaque, Amyloid/physiopathology , Plaque, Amyloid/therapy , Random Allocation , Running/physiology , Running/psychology , Spatial Memory/physiology
20.
Am J Transl Res ; 8(12): 5271-5285, 2016.
Article in English | MEDLINE | ID: mdl-28078001

ABSTRACT

The effects of nitric oxide (NO) on cerebral capillary angiogenesis and the regulation of pro- and anti-angiogenic factors that affect cerebral capillary angiogenesis, spatial learning, and memory ability are unclear. We assessed the effects of the NO precursor L-arginine (L-ARG) and the NO synthesis inhibitor Nω-nitro-L-arginine methylester (L-NAME) on cortical capillaries and spatial learning and memory abilities. We administered intracerebroventricular injections of L-ARG or L-NAME to rats before they were evaluated in the Morris water maze. We measured the levels of NO synthase activity, pro-angiogenic factors, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2), and the expression of the anti-angiogenic factors angiostatin and endostatin. We also quantitatively investigated parameters of the cortical capillaries using immunohistochemistry and stereological methods. The L-ARG treatment significantly improved rats' spatial learning abilities and increased NOS activity in the cortex. L-NAME disrupted spatial learning. Following the L-ARG treatment, the expression of the pro-angiogenic factors (VEGF and FGF-2) was higher and the expression of anti-angiogenic factors (endostatin) was lower than the vehicle-treated animals. In contrast, the L-NAME treatment reduced the expression of VEGF and increased the expression of endostatin. Based on these results, modulation of the NO content in the brain regulates VEGF, FGF-2, and endostatin expression, as well as capillary parameters in the cortex, which in turn influence spatial learning and memory performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...