Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(9): 4596-4609, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38385330

ABSTRACT

To discover new botanical products-based insecticide candidates, 14 triterpenoid saponins (1-14) including four new ones, obscurosides A-D (1-4), were isolated from Clematis obscura Maxim as potential agrochemicals against Acyrthosiphon pisum Harris and Plutella xylostella (L.). Compounds 1-3 were characterized by a rare ribose substitution at C-3, and 4 was a bidesmoside glycosylated at the rare C-23 and C-28 positions of the oleanane aglycone. Compounds 10 (median antifeeding concentration, AFC50 = 1.10 mg/mL; half-lethal concentration, LC50 = 1.21 mg/mL) and 13 (AFC50 = 1.09 mg/mL, LC50 = 1.37 mg/mL) showed significant insecticidal activities against third larvae of P. xylostella at 72 h. All saponins displayed antifeedant activities against A. pisum with the deterrence index of 0.20-1.00 at 400 µg/mL. Compound 8 showed optimal oral toxicity (LC50 = 50.09 µg/mL) against A. pisum, followed by compounds 1, 5-7, 9, and 14 (LC50 = 90.21-179.25 µg/mL) at 72 h. The shrinkage of the cuticle and the destruction of intestinal structures of microvilli, nucleus, endoplasmic reticulum, and mitochondria were toxic symptoms of 8-treated A. pisum. The significantly declined Chitinase activity in 8-treated A. pisum with an inhibition rate of 79.1% at LC70 (70% lethal concentration) could be the main reason for its significant oral toxicities. Molecular docking revealed favorable affinities of compounds 1 and 8 with group I Chitinase OfChtI (Group I Chitinase from Ostrinia furnacalis) through conventional hydrogen bonds and alkey/π-alkey interactions by different patterns. These results will provide valuable information for the development of novel botanical pesticides for the management of insect pests, especially against A. pisum.


Subject(s)
Aphids , Chitinases , Clematis , Insecticides , Moths , Saponins , Animals , Insecticides/chemistry , Saponins/chemistry , Clematis/chemistry , Pisum sativum , Molecular Docking Simulation , Larva
2.
Pest Manag Sci ; 79(1): 55-67, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36067067

ABSTRACT

BACKGROUND: Acyrthosiphon pisum Harris is the most destructive pest worldwide because of its ability to feed on plants directly and transmit plant viruses as a vector. This study aims to identify triterpenoid saponins from Oxytropis hirta Bunge as biopesticides to control aphids. RESULTS: Three new azukisapogenol triterpenoid saponins (1-3), a new pinoresinol lignan glycoside (8), and four known saponins (4-7) were identified from the root of O. hirta. Compounds 4-7 displayed significant aphicidal activities against A. pisum with oral toxicities (LC50  = 51.10-147.43 µg/mL, 72 h), deterrent effects (deterrence index = 1.00, 100-200 µg/mL, 24 h), and aphid reproduction inhibitory effects (inhibition rates = 75.91-86.73%, 400 µg/mL, 24 h), respectively. The carboxyl groups at C-3 GlcA and C-30 were functional groups for their aphicidal activities. The toxic symptoms caused by the optimal 5 involved insect body-color changes from light green to dark or gray-green, and then brown until death. The intestinal cavity, apical microvilli, nuclei, mitochondria, and electron dense granules in the midgut tissues of A. pisum were the target sites showing aphicidal activity. The suppression of pepsin and α-amylase, and the activation of lipase and trypsin could be the signs of organelle damage in the midgut tissues. CONCLUSION: Azukisapogenol triterpenoid saponins from O. hirta could be used as biopesticides to control aphids for their multiple efficacies, including oral toxicity, deterrent activity, and reproduction inhibitory activity. The toxic symptoms involved insect body-color changes. Midgut tissues and their related enzymes were the targets for saponins showing aphicidal activities. © 2022 Society of Chemical Industry.


Subject(s)
Aphids , Oxytropis , Saponins , Animals , Aphids/drug effects , Oxytropis/chemistry , Triterpenes/chemistry , Saponins/chemistry , Saponins/pharmacology , Insecticides/chemistry , Insecticides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...