Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Plant J ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852163

ABSTRACT

Sugarcane is the main source of sugar worldwide, and 80% of the sucrose production comes from sugarcane. However, the genetic differentiation and basis of agronomic traits remain obscure. Here, we sequenced the whole-genome of 219 elite worldwide sugarcane cultivar accessions. A total of approximately 6 million high-quality genome-wide single nucleotide polymorphisms (SNPs) were detected. A genome-wide association study identified a total of 2198 SNPs that were significantly associated with sucrose content, stalk number, plant height, stalk diameter, cane yield, and sugar yield. We observed homozygous tendency of favor alleles of these loci, and over 80% of cultivar accessions carried the favor alleles of the SNPs or haplotypes associated with sucrose content. Gene introgression analysis showed that the number of chromosome segments from Saccharum spontaneum decreased with the breeding time of cultivars, while those from S. officinarum increased in recent cultivars. A series of selection signatures were identified in sugarcane improvement procession, of which 104 were simultaneously associated with agronomic traits and 45 of them were mainly associated with sucrose content. We further proposed that as per sugarcane transgenic experiments, ShN/AINV3.1 plays a positive role in increasing stalk number, plant height, and stalk diameter. These findings provide comprehensive resources for understanding the genetic basis of agronomic traits and will be beneficial to germplasm innovation, screening molecular markers, and future sugarcane cultivar improvement.

2.
Front Plant Sci ; 15: 1310634, 2024.
Article in English | MEDLINE | ID: mdl-38328707

ABSTRACT

Anthocyanins are plant-based pigments that are primarily present in berries, grapes, purple yam, purple corn and black rice. The research on fruit corn with a high anthocyanin content is not sufficiently extensive. Considering its crucial role in nutrition and health it is vital to conduct further studies on how anthocyanin accumulates in fruit corn and to explore its potential for edible and medicinal purposes. Anthocyanin biosynthesis plays an important role in maize stems (corn). Several beneficial compounds, particularly cyanidin-3-O-glucoside, perlagonidin-3-O-glucoside, peonidin 3-O-glucoside, and their malonylated derivatives have been identified. C1, C2, Pl1, Pl2, Sh2, ZmCOP1 and ZmHY5 harbored functional alleles that played a role in the biosynthesis of anthocyanins in maize. The Sh2 gene in maize regulates sugar-to-starch conversion, thereby influencing kernel quality and nutritional content. ZmCOP1 and ZmHY5 are key regulatory genes in maize that control light responses and photomorphogenesis. This review concludes the molecular identification of all the genes encoding structural enzymes of the anthocyanin pathway in maize by describing the cloning and characterization of these genes. Our study presents important new understandings of the molecular processes behind the manufacture of anthocyanins in maize, which will contribute to the development of genetically modified variants of the crop with increased color and possible health advantages.

3.
BMC Plant Biol ; 24(1): 25, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38166633

ABSTRACT

BACKGROUND: Maize kernel colour is an important index for evaluating maize quality and value and mainly entails two natural pigments, carotenoids and anthocyanins. To analyse the genetic mechanism of maize kernel colour and mine single nucleotide polymorphisms (SNPs) related to kernel colour traits, an association panel including 244 superior maize inbred lines was used to measure and analyse the six traits related to kernel colour in two environments and was then combined with the about 3 million SNPs covering the whole maize genome in this study. Two models (Q + K, PCA + K) were used for genome-wide association analysis (GWAS) of kernel colour traits. RESULTS: We identified 1029QTLs, and two SNPs contained in those QTLs were located in coding regions of Y1 and R1 respectively, two known genes that regulate kernel colour. Fourteen QTLs which contain 19 SNPs were within 200 kb interval of the genes involved in the regulation of kernel colour. 13 high-confidence SNPs repeatedly detected for specific traits, and AA genotypes of rs1_40605594 and rs5_2392770 were the most popular alleles appeared in inbred lines with higher levels. By searching the confident interval of the 13 high-confidence SNPs, a total of 95 candidate genes were identified. CONCLUSIONS: The genetic loci and candidate genes of maize kernel colour provided in this study will be useful for uncovering the genetic mechanism of maize kernel colour, gene cloning in the future. Furthermore, the identified elite alleles can be used to molecular marker-assisted selection of kernel colour traits.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/genetics , Alleles , Anthocyanins , Color , Seeds/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
4.
BMC Plant Biol ; 23(1): 631, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38062375

ABSTRACT

Maize (Zea mays L.) is an important food and feed crop worldwide and serves as a a vital source of biological trace elements, which are important breeding targets. In this study, 170 maize materials were used to detect QTNs related to the content of Mn, Fe and Mo in maize grains through two GWAS models, namely MLM_Q + K and MLM_PCA + K. The results identified 87 (Mn), 205 (Fe), and 310 (Mo) QTNs using both methods in the three environments. Considering comprehensive factors such as co-location across multiple environments, strict significance threshold, and phenotypic value in multiple environments, 8 QTNs related to Mn, 10 QTNs related to Fe, and 26 QTNs related to Mo were used to identify 44 superior alleles. Consequently, three cross combinations with higher Mn element, two combinations with higher Fe element, six combinations with higher Mo element, and two combinations with multiple element (Mn/Fe/Mo) were predicted to yield offspring with higher numbers of superior alleles, thereby increasing the likelihood of enriching the corresponding elements. Additionally, the candidate genes identified 100 kb downstream and upstream the QTNs featured function and pathways related to maize elemental transport and accumulation. These results are expected to facilitate the screening and development of high-quality maize varieties enriched with trace elements, establish an important theoretical foundation for molecular marker assisted breeding and contribute to a better understanding of the regulatory network governing trace elements in maize.


Subject(s)
Trace Elements , Genome-Wide Association Study , Zea mays/genetics , Plant Breeding , Phenotype
5.
Nat Commun ; 14(1): 5232, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37633966

ABSTRACT

Genetic dissection of agronomic traits is important for crop improvement and global food security. Phenotypic variation of tassel branch number (TBN), a major breeding target, is controlled by many quantitative trait loci (QTLs). The lack of large-scale QTL cloning methodology constrains the systematic dissection of TBN, which hinders modern maize breeding. Here, we devise QTG-Miner, a multi-omics data-based technique for large-scale and rapid cloning of quantitative trait genes (QTGs) in maize. Using QTG-Miner, we clone and verify seven genes underlying seven TBN QTLs. Compared to conventional methods, QTG-Miner performs well for both major- and minor-effect TBN QTLs. Selection analysis indicates that a substantial number of genes and network modules have been subjected to selection during maize improvement. Selection signatures are significantly enriched in multiple biological pathways between female heterotic groups and male heterotic groups. In summary, QTG-Miner provides a large-scale approach for rapid cloning of QTGs in crops and dissects the genetic base of TBN for further maize breeding.


Subject(s)
Inflorescence , Zea mays , Zea mays/genetics , Plant Breeding , Hydrolases , Quantitative Trait Loci/genetics
6.
Front Plant Sci ; 13: 841693, 2022.
Article in English | MEDLINE | ID: mdl-35693186

ABSTRACT

Sugarcane (Saccharum spp.) is an efficient crop mainly used for sugar and bioethanol production. High yield and high sucrose of sugarcane are always the fundamental demands in sugarcane growth worldwide. Leaf angle and size of sugarcane can be attributed to planting density, which was associated with yield. In this study, we performed genome-wide association studies (GWAS) with a panel of 216 sugarcane core parents and their derived lines (natural population) to determine the genetic basis of leaf angle and key candidate genes with +2, +3, and +4 leaf at the seedling, elongation, and mature stages. A total of 288 significantly associated loci of sugarcane leaf angle at different developmental stages (eight phenotypes) were identified by GWAS with 4,027,298 high-quality SNP markers. Among them, one key locus and 11 loci were identified in all three stages and two stages, respectively. An InDel marker (SNP Ss6A_102766953) linked to narrow leaf angle was obtained. Overall, 4,089 genes were located in the confidence interval of significant loci, among which 3,892 genes were functionally annotated. Finally, 13 core parents and their derivatives tagged with SNPs were selected for marker-assisted selection (MAS). These candidate genes are mainly related to MYB transcription factors, auxin response factors, serine/threonine protein kinases, etc. They are directly or indirectly associated with leaf angle in sugarcane. This research provided a large number of novel genetic resources for the improvement of leaf angles and simultaneously to high yield and high bioethanol production.

7.
Sci Rep ; 12(1): 355, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013469

ABSTRACT

Platostoma palustre (Blume) A.J.Paton is an annual herbaceous persistent plant of the Labiatae family. However, there is a lack of genomic data for this plant, which severely restricts its genetic improvement. In this study, we performed genome survey sequencing of P. palustre and developed simple sequence repeat (SSR) markers based on the resulting sequence. K-mer analysis revealed that the assembled genome size was approximately 1.21 Gb. A total of 15,498 SSR motifs were identified and characterized in this study; among them, dinucleotide, and hexanucleotide repeats had the highest and lowest, respectively. Among the dinucleotide repeat motifs, AT/TA repeat motifs were the most abundant, and GC/CG repeat motifs were rather rare, accounting for 44.28% and 0.63%, respectively. Genetic similarity coefficient analysis by the UPMGA methods clustered 12 clones, of P. palustre and related species into two subgroups. These results provide helpful information for further research on P. palustre resources and variety improvements.


Subject(s)
DNA, Plant/genetics , Genes, Plant , Genome, Plant , High-Throughput Nucleotide Sequencing , Lamiaceae/genetics , Microsatellite Repeats , Sequence Analysis, DNA , Whole Genome Sequencing , Genetic Markers , Phylogeny
8.
BMC Plant Biol ; 21(1): 395, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34425748

ABSTRACT

BACKGROUND: The identification and functional analysis of genes that improve tolerance to low potassium stress in S. spontaneum is crucial for breeding sugarcane cultivars with efficient potassium utilization. Calcineurin B-like (CBL) protein is a calcium sensor that interacts with specific CBL-interacting protein kinases (CIPKs) upon plants' exposure to various abiotic stresses. RESULTS: In this study, nine CBL genes were identified from S. spontaneum. Phylogenetic analysis of 113 CBLs from 13 representative plants showed gene expansion and strong purifying selection in the CBL family. Analysis of CBL expression patterns revealed that SsCBL01 was the most commonly expressed gene in various tissues at different developmental stages. Expression analysis of SsCBLs under low K+ stress indicated that potassium deficiency moderately altered the transcription of SsCBLs. Subcellular localization showed that SsCBL01 is a plasma membrane protein and heterologous expression in yeast suggested that, while SsCBL01 alone could not absorb K+, it positively regulated K+ absorption mediated by the potassium transporter SsHAK1. CONCLUSIONS: This study provided insights into the evolution of the CBL gene family and preliminarily demonstrated that the plasma membrane protein SsCBL01 was involved in the response to low K+ stress in S. spontaneum.


Subject(s)
Calcineurin/genetics , Genome, Plant , Phylogeny , Plant Immunity/genetics , Plant Proteins/genetics , Potassium Deficiency/genetics , Saccharum/genetics , Cell Membrane , Crops, Agricultural/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Genetic Variation , Sequence Analysis, Protein
9.
Genomics ; 113(4): 1681-1688, 2021 07.
Article in English | MEDLINE | ID: mdl-33839267

ABSTRACT

Conventional genome-wide association studies (GWAS) focused on the phenotypic mean differences (mGWAS) but often ignored genetic variants influencing differences in the variance between genotypes. In this study, we performed variance heterogeneity GWAS (vGWAS) analysis for 13 previously measured agronomic traits in a maize population. We discovered a total of 129 significant SNPs. We demonstrated that the genetic loci influencing mean differences and variance heterogeneity formed distinct groups, suggesting that breeders were able to independently select for phenotype mean and variance values. Moreover, vGWAS served as a tractable approach to effectively identify 214 epistatic interaction pairs. In addition, we documented four agronomic traits with decreasing phenotype variance during modern maize breeding history and identified the potential genetic variants influencing this process. In summary, we discovered additional non-additive effects contributing to missing heritability and valuable genetic variants used for breeding varieties with desired phenotypic variance.


Subject(s)
Genome-Wide Association Study , Zea mays , Genotype , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Zea mays/genetics
10.
Genomics ; 113(4): 1671-1680, 2021 07.
Article in English | MEDLINE | ID: mdl-33838277

ABSTRACT

Ammonium transporters (AMTs) are plasma membrane proteins that exclusively transport ammonium/ammonia. It is essential for the nitrogen demand of plantsby AMT-mediated acquisition of ammonium from soils. The molecular characteristics and evolutionary history of AMTs in Saccharum spp. remain unclear. We comprehensively evaluated the AMT gene family in the latest release of the S. spontaneum genome and identified 6 novel AMT genes. These genes belong to 3 clusters: AMT2 (2 genes), AMT3 (3 genes), and AMT4 (one gene). Evolutionary analyses suggested that the S. spontaneum AMT gene family may have expanded via whole-genome duplication events. All of the 6 AMT genes are located on 5 chromosomes of S. spontaneum. Expression analyses revealed that AMT3;2 was highly expressed in leaves and in the daytime, and AMT2;1/3;2/4 were dynamic expressed in different leaf segments, as well as AMT2;1/3;2 demonstrated a high transcript accumulation level in leaves and roots and were significantly dynamic expressed under low-nitrogen conditions. The results suggest the functional roles of AMT genes on tissue expression and ammonium absorption in Saccharum. This study will provide some reference information for further elucidation of the functional mechanism and regulation of expression of the AMT gene family in Saccharum.


Subject(s)
Ammonium Compounds , Cation Transport Proteins , Saccharum , Ammonium Compounds/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Saccharum/genetics , Saccharum/metabolism
11.
Genes Genomics ; 43(5): 433-446, 2021 05.
Article in English | MEDLINE | ID: mdl-33651300

ABSTRACT

BACKGROUND: The biological pathways related to Arabidopsis seed development have been well studied and functional genes involved in it have been discovered. However, functional studies about maize seed development were more limited compared to Arabidopsis. OBJECTIVE: Therefore, transferring knowledge from Arabidopsis into maize would facilitate functional studies about maize seed development. METHOD: In this study, public transcriptome data of the two species related to seed development were obtained. Co-expression network in each species was compared by integrating orthology information. RESULTS: This conserved co-functional network contained 4510 maize and 4808 Arabidopsis genes, respectively. Most of these genes were expressed in throughout embryo, early or later endosperm/seed. These conserved co-functional genes were significantly enriched for members of PPR protein family, which was consistent with that PPR proteins play an important role in maize seed development. Spatial-temporally co-functional genes were discovered in the seed coat and embryo. Furthermore, 66 well-studied genes involved in Arabidopsis seed development were co-functional with 319 maize genes and one maize gene (GRMZM2G036050) was further confirmed using an EMS-induced seed defective mutant by bulked segregating RNA sequencing (BSR) analysis. CONCLUSIONS: Altogether, these results showed the potential of this approach to support functional studies in maize seed development by transferring knowledge from Arabidopsis.


Subject(s)
Gene Regulatory Networks , Genes, Plant , Seeds/genetics , Zea mays/genetics , Arabidopsis , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Seeds/growth & development , Seeds/metabolism , Zea mays/growth & development , Zea mays/metabolism
12.
Front Plant Sci ; 12: 750805, 2021.
Article in English | MEDLINE | ID: mdl-35058942

ABSTRACT

Sugarcane is among the most important global crops and a key bioenergy source. Sugarcane production is restricted by limited levels of available soil potassium (K+). The ability of plants to respond to stressors can be regulated by a range of microRNAs (miRNAs). However, there have been few studies regarding the roles of miRNAs in the regulation of sugarcane responses to K+-deficiency. To understand how these non-coding RNAs may influence sugarcane responses to low-K+ stress, we conducted expression profiling of miRNAs in sugarcane roots under low-K+ conditions via high-throughput sequencing. This approach led to the identification of 324 and 42 known and novel miRNAs, respectively, of which 36 were found to be differentially expressed miRNAs (DEMs) under low-K+ conditions. These results also suggested that miR156-x/z and miR171-x are involved in these responses as potential regulators of lateral root formation and the ethylene signaling pathway, respectively. A total of 705 putative targets of these DEMs were further identified through bioinformatics predictions and degradome analyses, and GO and KEGG enrichment analyses revealed these target mRNAs to be enriched for catalytic activity, binding functions, metabolic processes, plant hormone signal transduction, and mitogen-activated protein kinase (MAPK) signaling. In summary, these data provide an overview of the roles of miRNAs in the regulation of sugarcane response to low-K+ conditions.

13.
Front Plant Sci ; 11: 577274, 2020.
Article in English | MEDLINE | ID: mdl-33343593

ABSTRACT

Anti-sense transcription is increasingly being recognized as an important regulator of gene expression. But the transcriptome complementation of anti-sense RNA in hybrid relative to their inbred parents was largely unknown. In this study, we profiled strand-specific RNA sequencing (RNA-seq) in a maize hybrid and its inbred parents (B73 and Mo17) in two tissues. More anti-sense transcripts were present in the hybrid compared with the parental lines. We detected 293 and 242 single-parent expression of anti-sense (SPEA) transcripts in maize immature ear and leaf tissues, respectively. There was little overlap of the SPEA transcripts between the two maize tissues. These results suggested that SPEA is a general mechanism that drives extensive complementation in maize hybrids. More importantly, extremely high-level expression of anti-sense transcripts was associated with low-level expression of the cognate sense transcript by reducing the level of histone H3 lysine 36 methylation (H3K36me3). In summary, these SPEA transcripts increased our knowledge about the transcriptomic complementation in hybrid.

14.
BMC Plant Biol ; 20(1): 20, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31931714

ABSTRACT

BACKGROUND: Plant genomes contain a large number of HAK/KUP/KT transporters, which play important roles in potassium uptake and translocation, osmotic potential regulation, salt tolerance, root morphogenesis and plant development. Potassium deficiency in the soil of a sugarcane planting area is serious. However, the HAK/KUP/KT gene family remains to be characterized in sugarcane (Saccharum). RESULTS: In this study, 30 HAK/KUP/KT genes were identified in Saccharum spontaneum. Phylogenetics, duplication events, gene structures and expression patterns were analyzed. Phylogenetic analysis of the HAK/KUP/KT genes from 15 representative plants showed that this gene family is divided into four groups (clades I-IV). Both ancient whole-genome duplication (WGD) and recent gene duplication contributed to the expansion of the HAK/KUP/KT gene family. Nonsynonymous to synonymous substitution ratio (Ka/Ks) analysis showed that purifying selection was the main force driving the evolution of HAK/KUP/KT genes. The divergence time of the HAK/KUP/KT gene family was estimated to range from 134.8 to 233.7 Mya based on Ks analysis, suggesting that it is an ancient gene family in plants. Gene structure analysis showed that the HAK/KUP/KT genes were accompanied by intron gain/loss in the process of evolution. RNA-seq data analysis demonstrated that the HAK/KUP/KT genes from clades II and III were mainly constitutively expressed in various tissues, while most genes from clades I and IV had no or very low expression in the tested tissues at different developmental stages. The expression of SsHAK1 and SsHAK21 was upregulated in response to low-K+ stress. Yeast functional complementation analysis revealed that SsHAK1 and SsHAK21 could rescue K+ uptake in a yeast mutant. CONCLUSIONS: This study provided insights into the evolutionary history of HAK/KUP/KT genes. HAK7/9/18 were mainly expressed in the upper photosynthetic zone and mature zone of the stem. HAK7/9/18/25 were regulated by sunlight. SsHAK1 and SsHAK21 played important roles in mediating potassium acquisition under limited K+ supply. Our results provide valuable information and key candidate genes for further studies on the function of HAK/KUP/KT genes in Saccharum.


Subject(s)
Cation Transport Proteins/genetics , Plant Proteins/genetics , Potassium/metabolism , Saccharum , Cation Transport Proteins/metabolism , Evolution, Molecular , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Phylogeny , Plant Development/physiology , Plant Proteins/metabolism , RNA-Seq , Saccharum/genetics , Saccharum/metabolism , Salt Stress/genetics , Salt Stress/physiology
15.
Biomed Res Int ; 2019: 4943150, 2019.
Article in English | MEDLINE | ID: mdl-31815142

ABSTRACT

To understand dynamic changes in rhizosphere microbial community in consecutive monoculture, Illumina MiSeq sequencing was performed to evaluate the V3-V4 region of 16S rRNA in the rhizosphere of newly planted and three-year ratooning sugarcane and to analyze the rhizosphere bacterial communities. A total of 126,581 and 119,914 valid sequences were obtained from newly planted and ratooning sugarcane and annotated with 4445 and 4620 operational taxonomic units (OTUs), respectively. Increased bacterial community abundance was found in the rhizosphere of ratooning sugarcane when compared with the newly planted sugarcane. The dominant bacterial taxa phyla were similar in both sugarcane groups. Proteobacteria accounted for more than 40% of the total bacterial community, followed by Acidobacteria and Actinobacteria. The abundance of Actinobacteria was higher in the newly planted sugarcane, whereas the abundance of Acidobacteria was higher in the ratooning sugarcane. Our study showed that Sphingomonas, Bradyrhizobium, Bryobacter, and Gemmatimonas were dominant genera. Moreover, the richness and diversity of the rhizosphere bacterial communities slightly increased and the abundance of beneficial microbes, such as Bacillus, Pseudomonas, and Streptacidiphilus, in ratooning sugarcane were more enriched. With the consecutive monoculture of sugarcane, the relative abundance of functional groups related to energy metabolism, glycan biosynthesis, metabolism, and transcription were overrepresented in ratooning sugarcane. These findings could provide the way for promoting the ratooning ability of sugarcane by improving the soil bacterial community.


Subject(s)
Bacteria/classification , Microbiota , Rhizosphere , Saccharum/microbiology , Soil Microbiology , Bacteria/genetics , Biodiversity , China , Microbiota/genetics , Phylogeny , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Soil
16.
Bull Environ Contam Toxicol ; 103(6): 834-840, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31676938

ABSTRACT

Sugarcane is a potential species for use in heavy metal remediation. To analyze the effect of excess copper on sugarcane, the biomass, mineral nutrient content and activities of antioxidative enzymes were measured under copper stress. The results revealed that the biomass of roots and shoots significantly decreased with increasing copper concentration in solution. Most copper accumulated in the roots, and the translocation factor of copper decreased with an increase in copper stress. The MDA content in sugarcane roots notably increased under copper stress. The POD activity in sugarcane roots increased, and CAT activity decreased under copper stress. The Zn, Fe and Mn contents in shoots increased significantly under 200 µmol L-1 Cu2+ treatments. The Zn and Mg contents in roots notably decreased under copper stress, while the Zn and Mg translocation factors increased. These results indicated that the increase in POD activity and the modification of mineral nutrient uptake and transfer might play an important role in reducing the detrimental effects of excess copper.


Subject(s)
Antioxidants/metabolism , Copper/toxicity , Saccharum/drug effects , Seedlings/drug effects , Soil Pollutants/toxicity , Biomass , Copper/analysis , Minerals/metabolism , Oxidative Stress/drug effects , Saccharum/enzymology , Saccharum/growth & development , Seedlings/enzymology , Seedlings/growth & development , Soil Pollutants/analysis
17.
Front Plant Sci ; 10: 1533, 2019.
Article in English | MEDLINE | ID: mdl-31921227

ABSTRACT

The release of genomic sequences in the maize HapMap3 population provides an opportunity to study the genetic diversity of maize. In this study, retrotransposon insertion polymorphisms (RIPs) were mapped against the maize genome sequence. In total, 27 retrotransposon families were identified, and more than 170,000 RIPs were discovered in teosinte, landrace, and improved groups. Interestingly, the copy number of transposable elements (TEs) were more abundant in landrace groups than in teosinte or improved groups, suggesting that TEs experienced amplification during domestication and contraction during improvement. Landrace accessions exhibited higher TE insertion frequency compared to the other groups. Furthermore, the position of TE insertions were closer to genes and more abundant in the centromeres of landrace groups compared to the other groups. The three groups could be clearly distinguished by RIPs. These results demonstrate that TEs were amplified and contracted during maize domestication and improvement, respectively.

18.
Bull Environ Contam Toxicol ; 99(5): 607-613, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28975364

ABSTRACT

To evaluate the genotypic differences of sugarcane in response to cadmium (Cd) stress, the growth, Cd content, antioxidant enzymes, malondialdehyde (MDA) and proline in the leaves of five sugarcane varieties were investigated under normal and Cd-contaminated soil at 90 days after treatment (DAT). Height, diameter, and biomass significantly decreased in all varieties under Cd stress, with the greatest reduction in HOCP07-613 and less effects on YT666 and YT94-128. The Cd content in sugarcane markedly increased under Cd stress. Cd stress induced a significant increase in MDA contents in HOCP07-613 and ROC22 at 90 DAT and a greater increase in proline content in YT94-128 and YT666. The activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were affected by Cd stress in four varieties (excluding YT666). The increase in SOD and APX activities in the early stage of Cd stress (30 DAT) might help alleviate oxidative stress in sugarcane. These results suggested that the different responses of antioxidant systems to Cd stress might affect Cd tolerance of sugarcane.


Subject(s)
Cadmium/toxicity , Saccharum/physiology , Soil Pollutants/toxicity , Antioxidants/pharmacology , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Malondialdehyde/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Peroxidase/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Saccharum/metabolism , Superoxide Dismutase/metabolism
19.
PLoS One ; 10(5): e0126306, 2015.
Article in English | MEDLINE | ID: mdl-25955765

ABSTRACT

Sugarcane is the most important crop for supplying sugar. Due to its high biomass, sugarcane needs to absorb a large amount of potassium (K) throughout its lifecycle. In South China, a deficiency of K available in soil restricts the production of sugarcane. Increasing the tolerance of sugarcane to low-K will be an effective approach for improving survival of the crop in this area. However, there is little information regarding the mechanism of tolerance to low-K stress in sugarcane. In this study, a customized microarray was used to analyze the changes in the level of transcripts of sugarcane genes 8 h, 24 h and 72 h after exposure to low-K conditions. We identified a total of 4153 genes that were differentially expressed in at least one of the three time points. The number of genes responding to low-K stress at 72 h was almost 2-fold more than the numbers at 8 h and 24 h. Gene ontology (GO) analysis revealed that many genes involved in metabolic, developmental and biological regulatory processes displayed changes in the level of transcripts in response to low-K stress. Additionally, we detected differential expression of transcription factors, transporters, kinases, oxidative stress-related genes and genes in Ca+ and ethylene signaling pathways; these proteins might play crucial roles in improving the tolerance of sugarcane to low-K stress. The results of this study will help to better understand the molecular mechanisms of sugarcane tolerance to low-K.


Subject(s)
Gene Expression Profiling/methods , Plant Proteins/genetics , Potassium/metabolism , Saccharum/growth & development , Gene Expression Regulation, Plant , Gene Ontology , Oligonucleotide Array Sequence Analysis/methods , Plant Roots/genetics , Plant Roots/growth & development , Saccharum/anatomy & histology , Saccharum/genetics , Stress, Physiological
20.
Theor Appl Genet ; 122(1): 49-61, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20717799

ABSTRACT

The extent of and accessibility to genetic variation in a large germplasm collection are of interest to biologists and breeders. Construction of core collections (CC) is a favored approach to efficient exploration and conservation of novel variation in genetic resources. Using 4,310 Chinese accessions of Oryza sativa L. and 36 SSR markers, we investigated the genetic variation in different sized sub-populations, the factors that affect CC size and different sampling strategies in establishing CC. Our results indicated that a mathematical model could reliably simulate the relationship between genetic variation and population size and thus predict the variation in large germplasm collections using randomly sampled populations of 700-1,500 accessions. We recommend two principles in determining the CC size: (1) compromising between genetic variation and genetic redundancy and (2) retaining the main types of alleles. Based on the most effective scheme selected from 229 sampling schemes, we finally developed a hierarchical CC system, in which different population scales and genetic diversities allow a flexible use of genetic resources. The CC, comprising 1.7% (932) of the accessions in the basic collection, retained more than 85% of both the SSR and phenotypic variations. A mini core collection, comprising 0.3% (189) of the accessions in the basic collection, retained 70.65% of the SSR variation and 76.97% of the phenotypic variation, thus providing a rational framework for intensive surveys of natural variation in complex traits in rice genetic resources and hence utilization of variation in rice breeding.


Subject(s)
Oryza/genetics , Seeds/genetics , Tissue Banks , Alleles , Analysis of Variance , China , Genetic Loci/genetics , Genetic Variation , Microsatellite Repeats/genetics , Phenotype , Population Dynamics , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL
...