Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(25): 9878-9887, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35713093

ABSTRACT

Two new copper(II) complexes of sparfloxacin (sf), [Cu(Hsf)(HPB)(H2O)](ClO4)2 (1) and [Cu(Hsf)(PBT)(H2O)](ClO4)2 (2) (where HPB = 2-(2'-pyridyl)benzimidazole and PBT = 2-(4'-pyridyl) benzothiazole), have been synthesized and characterized by physicochemical and spectroscopic techniques. The oil-water partition coefficient (log P) values of complexes 1 and 2 were 1.47 and 1.71, respectively. By studying the interaction between the complexes and DNA, it was found that the complexes could bind to DNA through an intercalation mode. Moreover, both complexes were evaluated for antitumor activity, revealing that the complexes displayed good inhibitory activity toward the tested cancer cell lines (human lung carcinoma A549 cells, human hepatocellular carcinoma Bel-7402 cells and human esophageal carcinoma Eca-109 cells), but showed relatively low toxicity against normal human hepatic LO2 cells. In particular, the antitumor mechanism of the complexes on Eca-109 cells was investigated by morphological analysis, apoptosis analysis and determination of cell cycle arrest, mitochondrial membrane potential, reactive oxygen species (ROS) levels, and release of cytochrome c and Ca2+. The results demonstrated that the complexes could induce loss of intracellular mitochondrial functions and increase of ROS levels, which led to an increase of Ca2+ levels and the release of cytochrome c into the cytoplasm. In addition, the cell cycle was arrested in the G2/M phase, and western blot analysis showed that the caspase family was activated. These results fully proved that the complexes could induce apoptosis through DNA damage and loss of mitochondrial functions, accompanied by the regulation of endogenous proteins.


Subject(s)
Antineoplastic Agents , Carcinoma , Coordination Complexes , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Cytochromes c/pharmacology , DNA/chemistry , Fluoroquinolones , Humans , Reactive Oxygen Species/metabolism
2.
Eur J Med Chem ; 154: 220-232, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29803995

ABSTRACT

In the search for more effective anticancer drugs with less toxic side effects, dipeptides were introduced into the Cu(II) complex of 5-methyl-2-(2'-pyridyl)benzimidazole (HPBM). Analytical and spectroscopic techniques were employed to thoroughly characterize complexes [Cu(Gly-gly)(HPBM)(H2O)]ClO4·0.5H2O (1) and [Cu(Gly-L-leu)(HPBM)(H2O)]ClO4 (2) (where Gly-gly = Glycyl-glycine anion, Gly-L-leu = Glycyl-l-leucine anion). The solution stability studies performed by ultraviolet-visible (UV-Vis) spectroscopy confirmed the stability of the complexes in the buffer solutions. The DNA binding affinity was evaluated using multi-spectroscopy, viscosity measurement and molecular docking methods and further quantified by Kb and Kapp values, revealing an intercalative mode. Moreover, gel electrophoresis analysis revealed that the complexes could damage CT DNA through a hydroxyl radical pathway in the presence of ascorbic acid. All the complexes displayed favorable antimicrobial and cytotoxic activities toward the tested microorganisms (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) and cancer cells (A549, HeLa and PC-3). Most importantly, the possible anticancer mechanism of the complexes was explored by determining the cells morphological changes, intracellular reactive oxygen species (ROS) levels, location in mitochondria, mitochondrial membrane potentials and the expression of Bcl-2 family proteins. The results showed that the complexes could induce apoptosis in HeLa cells through an ROS-mediated mitochondrial dysfunction pathway, which was accompanied by the regulation of Bcl-2 family proteins.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Copper/pharmacology , Dipeptides/pharmacology , Organometallic Compounds/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Bacillus subtilis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Copper/chemistry , Dipeptides/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Escherichia coli/drug effects , HeLa Cells , Humans , Microbial Sensitivity Tests , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship
3.
J Fluoresc ; 27(2): 701-714, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27981404

ABSTRACT

Two new mononuclear mixed ligand copper(II) complexes [Cu(PBO)(Gly-gly)(H2O)]·ClO4·1.5H2O (1) and [Cu(PBO)(Gly-L-leu)(H2O)]·ClO4 (2) (PBO is 2-(2'-pyridyl)benzoxazole, Gly-gly and Gly-L-leu are Glycyl-glycine anion and Glycyl-L-leucine anion, respectively), have been prepared and characterized by various analytical and spectral techniques. The interactions of the complexes with DNA were investigated using multi-spectroscopic methods (absorption, emission, circular dichroism), viscometry and electrochemical titration as well as molecular docking technique. The results indicated that 1 and 2 are bound to calf thymus DNA (CT-DNA) through an intercalative mode. The thermodynamic analyses revealed that the reactions between the Cu(II) complexes with DNA are spontaneous with negative Gibbs free energy (ΔG). The positive changes of enthalpy (ΔH) and entropy (ΔS) suggested that the binding processes are dominated by hydrophobic interaction accompanying with endothermic. Also, the complexes exhibited efficient oxidative cleavage of pBR322 plasmid DNA in the presence of ascorbic acid, probably induced by •OH as reactive oxygen species. In addition, 1 and 2 displayed excellent antioxidant activities with the IC50 values of 0.112 and 0.191 µM, respectively, using the mean of nitroblue tetrazolium (NBT) photochemical reduction under a nonenzymatic condition. Moreover, the complexes were screened for their in vitro cytotoxicity against three human carcinoma cell lines (HeLa, PC-3 and A549), in which 2 owns higher cytotoxicity, which was consistent with DNA binding and cleavage ability order of the complexes. This results showed the in vitro biochemical potentials of the Cu(II)-dipeptide complexes with aromatic heterocyclic, viz. effective metallopeptide-nucleases, SOD mimics and non-platinum chemotherapeutic metallopharmaceuticals and their structure-activity relationship, which may contribute to the rational molecular design of new metallopeptide based chemotherapeutic agents.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Copper/chemistry , DNA/metabolism , Intercalating Agents/pharmacology , Animals , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Benzoxazoles/chemistry , Cattle , Coordination Complexes/chemistry , Dipeptides/chemistry , Humans , Intercalating Agents/chemistry , Molecular Docking Simulation , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...