Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 11: 710286, 2021.
Article in English | MEDLINE | ID: mdl-34527583

ABSTRACT

The chemokine CXCL9 (C-X-C motif chemokine ligand 9) has been reported to be required for antitumour immune responses following immune checkpoint blockade. In this study, we sought to investigate the potential value of CXCL9 according to immune responses in patients with breast cancer (BC). A variety of open-source databases and online tools were used to explore the expression features and prognostic significance of CXCL9 in BC and its correlation with immune-related biomarkers followed by subsequent verification with immunohistochemistry experiments. The CXCL9 mRNA level was found to be significantly higher in BC than in normal tissue and was associated with better survival outcomes in patients with ER-negative tumours. Moreover, CXCL9 is significantly correlated with immune cell infiltration and immune-related biomarkers, including CTLA4, GZMB, LAG3, PDCD1 and HAVCR2. Finally, we performed immunohistochemistry with breast cancer tissue samples and observed that CXCL9 is highly expressed in the ER-negative subgroup and positively correlated with the immune-related factors LAG3, PD1, PDL1 and CTLA4 to varying degrees. These findings suggest that CXCL9 is an underlying biomarker for predicting the status of immune infiltration in ER-negative breast cancer.

2.
Cancer Lett ; 440-441: 156-167, 2019 01.
Article in English | MEDLINE | ID: mdl-30336197

ABSTRACT

Resistance to chemotherapy remains a significant problem in the treatment of breast cancer, especially for triple-negative breast cancer (TNBC), in which standard systemic therapy is currently limited to chemotherapeutic agents. Our study aimed to better understand the molecular mechanisms that lead to failure of chemotherapy in TNBC. Herein, we observed elevated expression of Notch1 and major vault protein (MVP) in MDA-MB-231DDPR cells compared to their parental counterparts. We demonstrated that Notch1 could positively regulate the expression of MVP. Also, Notch1 intracellular domain (ICD) was capable of binding to CBF-1 on the promoter of MVP to drive its transcription, resulting in activation of AKT pathway and promoting the progress of epithelial to mesenchymal transition (EMT). Conversely, silencing of Notch1 and MVP suppressed AKT pathway, reduced EMT and enhanced the sensitivity of TNBC cells to cisplatin and doxorubicin. Survival analysis indicated that the MVP was closely related to shorter recurrence-free survival (RFS) in patients with TNBC. Collectively, this study provides evidence that Notch1 activates AKT pathway and promotes EMT partly through direct activation of MVP. Targeting Notch1/MVP pathway appears to have potential in overcoming chemoresistance in TNBC.


Subject(s)
Receptor, Notch1/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Vault Ribonucleoprotein Particles/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , Down-Regulation , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Female , Humans , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Notch1/antagonists & inhibitors , Receptor, Notch1/biosynthesis , Receptor, Notch1/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Vault Ribonucleoprotein Particles/biosynthesis , Vault Ribonucleoprotein Particles/genetics
3.
NPJ Breast Cancer ; 4: 20, 2018.
Article in English | MEDLINE | ID: mdl-30109262

ABSTRACT

Basal-like breast cancer (BLBC) is an aggressive subtype with a strong tendency to metastasize. Due to the lack of effective chemotherapy, BLBC has a poor prognosis compared with luminal subtype breast cancer. MicroRNA-221 and -222 (miR-221/222) are overexpressed in BLBC and associate with metastasis as well as poor prognosis; however, the mechanisms by which miR-221/222 function as oncomiRs remain unknown. Here, we report that miR-221/222 expression is inversely correlated with Notch3 expression in breast cancer cell lines. Notch3 is known to be overexpressed in luminal breast cancer cells and inhibits epithelial to mesenchymal transition (EMT). We demonstrate that miR-221/222 target Notch3 by binding to its 3' untranslated region and suppressing protein translation. Ectopic expression of miR-221/222 significantly promotes EMT, whereas overexpression of Notch3 intracellular domain attenuates the oncogenic function of miR-221/222, suggesting that miR-221/222 exerts its oncogenic role by negatively regulating Notch3. Taken together, our results elucidated that miR-221/222 promote EMT via targeting Notch3 in breast cancer cell lines suggesting that miR-221/222 can serve as a potential therapeutic target in BLBC.

SELECTION OF CITATIONS
SEARCH DETAIL
...