Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(4): e202301711, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372187

ABSTRACT

Stored products are constantly infested by insects, so finding eco-friendly bioinsecticides for insect management is important. The work aimed to assess the insecticidal and repellent activity of essential oil (EO) from Hedychium glabrum S. Q. Tong, Hedychium coronarium Koen., and Hedychium yunnanense Gagnep. against Tribolium castaneum, Lasioderma serricorne, and Liposcelis bostrychophila. Results showed that 88 chemical components were identified in the extracted Hedychium EOs, indicating that they exhibited diversity in components. According to principal component analysis (PCA), the composition of the EO from the H. yunnanense stem and leaf (EOHYSL) was significantly different from other EOs due to the different organs and species. The biological activity also varied continuously with plant species and organs. Only the EO of H. yunnanense (EOHY) showed strong fumigant toxicity. While in the contact tests, EOHGR showed the strongest toxicity effect on L. bostrychophila, with a LC50 value of 71.76 µg/cm2, which was closest to the positive control (Pyrethrin). All EOs had remarkable repellent activities against the three target insects, and repellency increased with concentration. According to the results of the comprehensive score, EOHY had the highest potential, which ranged from 0.7999 to 0.8689. Thus, Hedychium EOs possess potential biorational traits to be biological insecticides.


Subject(s)
Coleoptera , Insect Repellents , Insecticides , Oils, Volatile , Tribolium , Zingiberaceae , Animals , Oils, Volatile/toxicity , Oils, Volatile/chemistry , Insecta , Insecticides/chemistry , Insect Repellents/pharmacology , Insect Repellents/chemistry
2.
J Food Prot ; 87(1): 100205, 2024 01.
Article in English | MEDLINE | ID: mdl-38065366

ABSTRACT

Blumea balsamifera (L.) DC. (Asteraceae), also known as sambong, is a perennial herb used in China for medicinal purposes. The essential oil (EO) of B. balsamifera was extracted by hydrodistillation. Thirty chemical components of the EO were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC, accounting for 88.0% (w/w) of the total oil. The EO of B. balsamifera was mainly composed of monoterpenes and sesquiterpenes, in which borneol (23.3%), ß-caryophyllene (20.9%) and camphor (11.8%) were the major components. The insecticidal activities of the EO and its three main compounds against Tribolium castaneum, Lasioderma serricorne and Sitophilus oryzae were evaluated. The results of bioassays displayed that the EO of B. balsamifera did not have fumigant toxicity to the three target insects, but exhibited significant contact activity against L. serricorne (LD50 = 12.4 µg/adult) and S. oryzae (LD50 = 44.4 µg/adult). Meanwhile, the EO showed a notable repellent effect on T. castaneum at all testing concentrations and a general repellent effect on S. oryzae at high concentrations (78.63 nL/cm2). ß-Caryophyllene showed the best performance in the contact toxicity bioassays against the three insects. The results indicated that B. balsamifera has the potential to be used as a source of botanical insecticides for the control of stored-product insects.


Subject(s)
Asteraceae , Coleoptera , Insecticides , Oils, Volatile , Polycyclic Sesquiterpenes , Weevils , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Insecticides/pharmacology
3.
Chem Biodivers ; 20(12): e202301206, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37840218

ABSTRACT

Storage is a crucial part during grain production for the massive spoilage caused by stored product insects. Essential oils (EOs) of plant origin have been highly recommended to combating insects which are biodegradable and safe mode of action. Hence, to make the fullest use of natural resources, essential oils of different parts from Piper yunnanense (the whole part, PYW; fruits, PYF; leaves, PYL) and Piper boehmeriifolium (leaves, PBL) were extracted by steam distillation method in the present study. Gas chromatography-mass spectrometry (GC-MS) characterization revealed bicyclogermacrene (PYW), γ-muurolene (PYF), δ-cadinene (PYL) and methyl 4,7,10,13,16,19-docosahexaenoate (PBL) as the principal compound of each essential oil. Sesquiterpene hydrocarbons were also recognized as the richest class accounting for 56.3 %-94.9 % of the total oil. Three storage pests, Tribolium castaneum, Lasioderma serricorne and Liposceis bostrychophila, were exposed to different concentrations of EOs to determine their insecticidal effects. All tested samples performed modest contact toxicity in contrast to a bioactive ingredient pyrethrin, among which the most substantial effects were observed in PYF EOs against T. castaneum (35.84 µg/adult), PBL EOs against L. serricorne (15.76 µg/adult) and PYW EOs against L. bostrychophila (57.70 µg/cm2 ). In terms of repellency tests, essential oils of PYF at 78.63 nL/cm2 demonstrated to have a remarkable repellence against T. castaneum at 2h and 4h post-exposure. The investigations indicate diverse variations in the chemical profiles and insecticidal efficacies of P. yunnanense and P. boehmeriifolium EOs, providing more experimental evidence for the use of the Piper plants.


Subject(s)
Coleoptera , Insect Repellents , Insecticides , Oils, Volatile , Piper , Tribolium , Animals , Oils, Volatile/chemistry , Insecta , Insect Repellents/pharmacology , Insect Repellents/chemistry , Insecticides/chemistry
4.
J Am Heart Assoc ; 11(6): e023378, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35261264

ABSTRACT

Background Myocardial dysfunction is a critical cause of post-cardiac arrest hemodynamic instability and circulatory failure that may lead to early mortality after resuscitation. Trimetazidine is a metabolic agent that has been demonstrated to provide protective effects in myocardial ischemia. However, whether trimetazidine protects against postresuscitation myocardial dysfunction is unknown. Methods and Results Cardiopulmonary resuscitation was initiated after 8 minutes of untreated ventricular fibrillation in Sprague-Dawley rats. Animals were randomized to 4 groups immediately after resuscitation (n=15/group): (1) normothermia control (NTC); (2) targeted temperature management; (3) trimetazidine-normothermia; (4) trimetazidine-targeted temperature management. TMZ was administered at a single dose of 10 mg/kg in rats with trimetazidine. The body temperature was maintained at 34.0°C for 2 hours and then rewarmed to 37.5°C in rats with targeted temperature management. Postresuscitation hemodynamics, 96-hours survival, and pathological analysis were assessed. Heart tissues and blood samples of additional rats (n=6/group) undergoing the same experimental procedure were collected to measure myocardial injury, inflammation and oxidative stress-related biomarkers with ELISA-based quantification assays. Compared with normothermia control, tumor necrosis factor-α, and cardiac troponin-I were significantly reduced, whereas the left ventricular ejection fraction and 96-hours survival rates were significantly improved in the 3 experimental groups. Furthermore, inflammation and oxidative stress-related biomarkers together with collagen volume fraction were significantly decreased in rats undergoing postresuscitation interventions. Conclusions Trimetazidine significantly alleviates postresuscitation myocardial dysfunction and improves survival by decreasing oxidative stress and inflammation in a ventricular fibrillation rat model. A single dose of trimetazidine administrated immediately after resuscitation can effectively improve cardiac function, whether used alone or combined with targeted temperature management.


Subject(s)
Cardiomyopathies , Cardiopulmonary Resuscitation , Trimetazidine , Animals , Rats , Biomarkers , Cardiopulmonary Resuscitation/methods , Inflammation , Rats, Sprague-Dawley , Stroke Volume , Trimetazidine/pharmacology , Trimetazidine/therapeutic use , Ventricular Fibrillation/etiology , Ventricular Fibrillation/prevention & control , Ventricular Function, Left
5.
Biomaterials ; 275: 120952, 2021 08.
Article in English | MEDLINE | ID: mdl-34147720

ABSTRACT

It remains a great challenge for targeted therapy of heart diseases. To achieve desirable heart targeting, we developed a polyphenol-assisted nanoprecipitation/self-assembly approach for facile engineering of functional nanoparticles. Three different materials were employed as representative carriers, while gallic acid, catechin, epigallocatechin gallate, and tannic acid (TA) served as typical polyphenols with varied numbers of phenolic hydroxyl groups. By optimizing different parameters, such as polyphenol types and the weight ratio of carrier materials and polyphenols, well-defined nanoparticles with excellent physicochemical properties can be easily prepared. Regardless of various carrier materials, TA-derived nanoparticles showed potent reactive oxygen species-scavenging activity, especially nanoparticles produced from a cyclodextrin-derived bioactive material (TPCD). By internalization into cardiomyocytes, TPCD/TA nanoparticles (defined as TPTN) effectively protected cells from hypoxic-ischemic injury. After intravenous injection, TPTN considerably accumulated in the injured heart in two murine models of ventricular fibrillation cardiac arrest in rats and myocardial hypertrophy in mice. Correspondingly, intravenously delivered TPTN afforded excellent therapeutic effects in both heart diseases. Preliminary experiments also revealed good safety of TPTN. These results substantiated that TPTN is a promising nanotherapy for targeted treatment of heart diseases, while polyphenol-assisted self-assembly is a facile but robust strategy to develop heart-targeting delivery systems.


Subject(s)
Heart Diseases , Nanoparticles , Animals , Mice , Polyphenols , Rats , Reactive Oxygen Species , Tannins
6.
Biomaterials ; 230: 119605, 2020 02.
Article in English | MEDLINE | ID: mdl-31740099

ABSTRACT

Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide. Vascular inflammation is closely related to the pathogenesis of a diverse group of CVDs. Currently, it remains a great challenge to achieve site-specific delivery and controlled release of therapeutics at vascular inflammatory sites. Herein we hypothesize that active targeting nanoparticles (NPs) simultaneously responsive to low pH and high levels of reactive oxygen species (ROS) can serve as an effective nanoplatform for precision delivery of therapeutic cargoes to the sites of vascular inflammation, in view of acidosis and oxidative stress at inflamed sites. The pH/ROS dual-responsive NPs were constructed by combination of a pH-sensitive material (ACD) and an oxidation-responsive material (OCD) that can be facilely synthesized by chemical functionalization of ß-cyclodextrin, a cyclic oligosaccharide. Simply by regulating the weight ratio of ACD and OCD, the pH/ROS responsive capacity can be easily modulated, affording NPs with varied hydrolysis profiles under inflammatory microenvironment. Using rapamycin (RAP) as a candidate drug, we first demonstrated in vitro therapeutic advantages of RAP-containing NPs with optimal dual-responsive capability, i.e. RAP/AOCD NP, and a non-responsive nanotherapy (RAP/PLGA NP) and two single-responsive nanotherapies (RAP/ACD NP and RAP/OCD NP) were used as controls. In an animal model of vascular inflammation in rats subjected to balloon injury in carotid arteries, AOCD NP could accumulate at the diseased site after intravenous (i.v.) injection. Consistently, i. v. treatment with RAP/AOCD NP more effectively inhibited neointimal hyperplasia in rats with induced arterial injuries, compared to RAP/PLGA NP, RAP/ACD NP, and RAP/OCD NP. By surface decoration of AOCD NP with a peptide (KLWVLPKGGGC) targeting type IV collagen (Col-IV), the obtained Col-IV targeting, dual-responsive nanocarrier TAOCD NP showed dramatically increased accumulation at injured carotid arteries. Furthermore, RAP/TAOCD NP exhibited significantly potentiated in vivo efficacy in comparison to the passive targeting nanotherapy RAP/AOCD NP. Importantly, in vitro cell culture experiments and in vivo animal studies in both mice and rats revealed good safety for AOCD NP and RAP/AOCD NP, even after long-term treatment via i. v. injection. Consequently, our results demonstrated that the newly developed Col-IV targeting, pH/ROS dual-responsive NPs may serve as an effective and safe nanovehicle for precision therapy of arterial restenosis and other vascular inflammatory diseases.


Subject(s)
Nanoparticles , Oxidative Stress , Sirolimus , Vascular Diseases , Animals , Drug Delivery Systems , Hydrogen-Ion Concentration , Inflammation/therapy , Mice , Nanomedicine , Rats , Reactive Oxygen Species , Vascular Diseases/therapy
7.
Chem Commun (Camb) ; 54(25): 3174-3177, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29528077

ABSTRACT

We demonstrate that the traditional emulsification theory can be enriched by a self-assembly approach, in which hydrophilic copolymers with one block exhibiting noncovalent forces with the oil phase self-assemble at the oil-water interface, thereby reducing interfacial tension and forming emulsions. This approach was established using affinity diblock copolymers that can interact with oil molecules through electrostatic interactions or hydrogen-bonding. Nanoemulsions with excellent stability were successfully obtained simply via vortexing. The self-assembled emulsions showed unexpected catastrophic phase inversion, further extending the phase structures to bicontinuous and reverse emulsions. Complex emulsions could also be fabricated by this strategy. In addition, the thus prepared nanoemulsions can be used to engineer different nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...