Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Biol ; 58(1): 374-384, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32366153

ABSTRACT

Context: Panax ginseng C. A. Meyer (Araliaceae) root and leaf have always been considered in the traditional theory as hot and cold properties, respectively.Objective: To clarify the hot and cold properties of ginseng root and leaf from a thermodynamic viewpoint.Materials and methods: Thirty ICR male mice were randomly assigned to control (water), ginseng root group (GRP) and ginseng leaf group (GLP) with a concentration of 0.075 g/mL; the volume was 0.1 mL/10 g (body mass) per day by intragastric administration for 20 days. Ultra-Performance Liquid Chromatography (UPLC) was used to determine quality control through seven ginsenosides contained in ginseng root and leaf. Rest metabolic rate (RMR) and energy expenditure were monitored every 9 days by TSE System. At the 20th day, serum T3 or T4, liver or brown adipose tissue (BAT) mitochondrial respiration were investigated.Results: The quality control of GRP and GLP were within requirements of 2015 China Pharmacopoeia. The RMR (mLO2/h) in GLP (47.95 ± 4.20) was significantly lower than control (52.10 ± 4.79) and GRP (55.35 ± 4.48). Mitochondrial protein concentration and respiration were significantly increased in GRP (BAT, 79.12 ± 2 .08 mg/g, 239.89 ± 10.24 nmol O2/min/g tissue; Liver, 201.02 ± 10.89, 202.44 ± 3.24) and decreased in GLP (BAT, 53.42 ± 3.48, 153.49 ± 5.58; Liver, 138.69 ± 5.69, 104.50 ± 6.25) compared with control.Conclusions: The hot and cold properties of ginseng root and leaf are correlated with thermogenic capacity and mitochondrial function of BAT and liver, which deserve to further research.


Subject(s)
Mitochondria/drug effects , Panax , Plant Extracts/pharmacology , Plant Leaves , Plant Roots , Thermogenesis/drug effects , Animals , Energy Metabolism/drug effects , Energy Metabolism/physiology , Male , Mice , Mice, Inbred ICR , Mitochondria/metabolism , Plant Extracts/isolation & purification , Thermogenesis/physiology
2.
Exp Ther Med ; 19(5): 3305-3315, 2020 May.
Article in English | MEDLINE | ID: mdl-32266027

ABSTRACT

Cassia seed is the dried ripe seed of Cassia obtusifolia L. or Cassia tora L., which is widely used as a food or traditional Chinese medicine. The aim of the present study was to detect the components and metabolites in the culture of human or rat intestinal microflora suspension with the water decoction of cassia seed in vitro, using an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry system equipped with a negative ion scan mode. Initially, ellagic acid was identified in the cassia seed decoction. Subsequently, six different metabolites, including urolithin (uro)-A, uro-B, uro-D, uro-M6, uro-M7 and uro-B-glucuronide (glur), were detected after co-culture of the cassia seed decoction with intestinal microflora, but not in the cassia seed decoction alone. Uro-M6, uro-M7, uro-A and uro-B were common metabolites in the culture of human or rat intestinal microflora suspension with the water decoction of cassia seed. However, uro-D was only detected in the culture of rat intestinal microflora suspension with the water decoction of cassia seed, and uro-B-glur was only detected in the culture of human intestinal microflora with the water decoction of cassia seed. The uro and intermediate metabolites were produced by ellagic acid in the cassia seed decoction under the action of the intestinal microflora. The production of metabolites might be related to the abundance and diversity of the intestinal microflora in humans and rats. The present study provided rationale for further pharmacological and clinical studies on the mechanisms of action of cassia seeds.

SELECTION OF CITATIONS
SEARCH DETAIL
...