Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(9): e2310993121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38386707

ABSTRACT

How do vessels find optimal radii? Capillaries are known to adapt their radii to maintain the shear stress of blood flow at the vessel wall at a set point, yet models of adaptation purely based on average shear stress have not been able to produce complex loopy networks that resemble real microvascular systems. For narrow vessels where red blood cells travel in a single file, the shear stress on vessel endothelium peaks sharply when a red blood cell passes through. We show that stable shear-stress-based adaptation is possible if vessel shear stress set points are cued to the stress peaks. Model networks that respond to peak stresses alone can quantitatively reproduce the observed zebrafish trunk microcirculation, including its adaptive trajectory when hematocrit changes or parts of the network are amputated. Our work reveals the potential for mechanotransduction alone to generate stable hydraulically tuned microvascular networks.


Subject(s)
Mechanotransduction, Cellular , Zebrafish , Animals , Microvessels , Endothelium, Vascular , Veins
2.
Elife ; 122023 10 31.
Article in English | MEDLINE | ID: mdl-37906220

ABSTRACT

Jellyfish and sea anemones fire single-use, venom-covered barbs to immobilize prey or predators. We previously showed that the anemone Nematostella vectensis uses a specialized voltage-gated calcium (CaV) channel to trigger stinging in response to synergistic prey-derived chemicals and touch (Weir et al., 2020). Here, we use experiments and theory to find that stinging behavior is suited to distinct ecological niches. We find that the burrowing anemone Nematostella uses uniquely strong CaV inactivation for precise control of predatory stinging. In contrast, the related anemone Exaiptasia diaphana inhabits exposed environments to support photosynthetic endosymbionts. Consistent with its niche, Exaiptasia indiscriminately stings for defense and expresses a CaV splice variant that confers weak inactivation. Chimeric analyses reveal that CaVß subunit adaptations regulate inactivation, suggesting an evolutionary tuning mechanism for stinging behavior. These findings demonstrate how functional specialization of ion channel structure contributes to distinct organismal behavior.


Subject(s)
Sea Anemones , Animals , Sea Anemones/genetics , Biological Evolution , Venoms
3.
bioRxiv ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37577638

ABSTRACT

Jellyfish and sea anemones fire single-use, venom-covered barbs to immobilize prey or predators. We previously showed that the anemone Nematostella vectensis uses a specialized voltage-gated calcium (CaV) channel to trigger stinging in response to synergistic prey-derived chemicals and touch (Weir et al., 2020). Here we use experiments and theory to find that stinging behavior is suited to distinct ecological niches. We find that the burrowing anemone Nematostella uses uniquely strong CaV inactivation for precise control of predatory stinging. In contrast, the related anemone Exaiptasia diaphana inhabits exposed environments to support photosynthetic endosymbionts. Consistent with its niche, Exaiptasia indiscriminately stings for defense and expresses a CaV splice variant that confers weak inactivation. Chimeric analyses reveal that CaVß subunit adaptations regulate inactivation, suggesting an evolutionary tuning mechanism for stinging behavior. These findings demonstrate how functional specialization of ion channel structure contributes to distinct organismal behavior.

4.
Dalton Trans ; 52(22): 7544-7550, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37183969

ABSTRACT

BiVO4 possesses a suitable band gap for photoelectrochemical (PEC) water splitting to produce hydrogen; however, the performance of BiVO4 is limited by several adverse factors. The bulk charge recombination and the slow surface water oxidation reaction of BiVO4 are main unfavorable factors. In view of these disadvantages, an Fe-Bi electrocatalyst is loaded on BiVO4 to improve the PEC performance of BiVO4. After modification, the onset potential of BiVO4 shifts negatively by 60 mV, and the saturated photocurrent is greatly increased. Systematic studies demonstrate that the Fe-Bi electrocatalyst not only enhances the bulk charge separation, but also accelerates the surface water oxidation rate of BiVO4 and greatly reduces the resistance of the reaction interface.

5.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34413186

ABSTRACT

The energy demands of neurons are met by a constant supply of glucose and oxygen via the cerebral vasculature. The cerebral cortex is perfused by dense, parallel arterioles and venules, consistently in imbalanced ratios. Whether and how arteriole-venule arrangement and ratio affect the efficiency of energy delivery to the cortex has remained an unanswered question. Here, we show by mathematical modeling and analysis of the mapped mouse sensory cortex that the perfusive efficiency of the network is predicted to be limited by low-flow regions produced between pairs of arterioles or pairs of venules. Increasing either arteriole or venule density decreases the size of these low-flow regions, but increases their number, setting an optimal ratio between arterioles and venules that matches closely that observed across mammalian cortical vasculature. Low-flow regions are reshaped in complex ways by changes in vascular conductance, creating geometric challenges for matching cortical perfusion with neuronal activity.


Subject(s)
Blood Flow Velocity/physiology , Cerebral Cortex/blood supply , Computer Simulation , Models, Biological , Neurons/metabolism , Animals , Arterioles/physiology , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Mice , Venules/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...