Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 14(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36433019

ABSTRACT

In order to improve the interface and mechanical properties of aramid fiber (AF)-reinforced epoxy resin (EP) composites (AF/EPs), the surface modification of AF was carried out with atmospheric pressure air plasma, and the effects of plasma treatment time and discharge power on the AF surface and the interface and mechanical properties of AF/EPs were investigated. The results show that, when plasma treatment time was 10 min and discharge power was 400 W, AF showed the best modification effect. Compared to the unmodified material, the total content of active groups on the surface of AF increased by 82.4%; the contact angle between AF and EP decreased by 20%; the interfacial energy and work of adhesion increased by 77.1% and 19.1%, respectively; the loss of AF monofilament tensile strength was controlled at only 8.6%; and the interlaminar shear strength and tensile strength of AF/EPs increased by 45.5% and 10.4%, respectively. The improvement in AF/EP interfacial and mechanical properties is due to the introduction of more active groups on the AF surface with suitable plasma processing parameters, which strengthens the chemical bonding between the AF and EP matrix. At the same time, plasma treatment effectively increases the surface roughness of AF, and the mechanical meshing effect between the AF and EP matrix is improved. The synergistic effect of chemical bonding and mechanical meshing improves the wettability and interfacial bonding strength between the AF and EP matrix, which enables the load to be transferred from the resin to the fiber more efficiently, thereby improving the mechanical properties of the AF/EP.

2.
RSC Adv ; 8(67): 38689-38700, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-35559100

ABSTRACT

Epoxy resin was grafted to graphene oxide (GO) via esterification reaction and 3D structure hybrids were prepared by combining 1D carbon nanotube (CNT) and 2D functionalized GO through π-stacking interaction. Epoxy composites filled with 3D structure hybrids were fabricated. The results show that functionalized GO effectively improves the dispersibility of CNTs in epoxy matrix due to good compatibility. Excellent mechanical properties were achieved by epoxy composites filled with 3D structure hybrids. The fracture surface analysis indicated improved interfacial interaction between 3D structure hybrids and epoxy matrix, which may due to the covalent bonding formed between the epoxy molecular chain grafted on EGO and the hardener agent during the curing process. In the 3D structure filler network, the mechanisms of crack deflection/bifurcation induced by functionalized GO make the crack path tortuous, which causes the cracks to encounter more CNTs and then promote the mechanisms of CNT fracture and crack bridging, resulting in more energy dissipation. This is the key mechanism for its excellent reinforcing and toughening effects.

SELECTION OF CITATIONS
SEARCH DETAIL