Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 10284, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26194184

ABSTRACT

Although nitrogen addition and recovery from degradation can both promote production of grassland biomass, these two factors have rarely been investigated in combination. In this study, we established a field experiment with six N-treatment (CK, 10, 20, 30, 40, 50 g N m(-2) yr(-1)) on five fields with different degradation levels in the Inner Mongolian steppe of China from 2011-2013. Our observations showed that while the external nitrogen increased the aboveground biomass in all five grasslands, the magnitude of the effects differed with the severity of degradation. Fields with a higher level of degradation tended to have a higher saturation value (20 g N m(-2) yr(-1)) than those with a lower degradation level ( < 10 g N m(-2) yr(-1)). After three years of experimentation, species richness showed little change across degradation levels. Among the four functional groups of grasses, sedges, forbs and legumes, grasses shared the most similar response patterns with those of the whole community, demonstrating the predominant role that they play in the restoration of grassland under a stimulus of nitrogen addition.


Subject(s)
Biodiversity , Biomass , Grassland , Nitrogen/pharmacology , China , Species Specificity
2.
Glob Chang Biol ; 21(2): 816-26, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25099555

ABSTRACT

Forest growth is sensitive to interannual climatic change in the alpine treeline ecotone (ATE). Whether the alpine treeline ecotone shares a similar pattern of forest growth with lower elevational closed forest belt (CFB) under changing climate remains unclear. Here, we reported an unprecedented acceleration of Picea schrenkiana forest growth since 1960s in the ATE of Tianshan Mountains, northwestern China by a stand-total sampling along six altitudinal transects with three plots in each transect: one from the ATE between the treeline and the forest line, and the other two from the CFB. All the sampled P. schrenkiana forest patches show a higher growth speed after 1960 and, comparatively, forest growth in the CFB has sped up much slower than that in the ATE. The speedup of forest growth at the ATE is mainly accounted for by climate factors, with increasing temperature suggested to be the primary driver. Stronger water deficit as well as more competition within the CFB might have restricted forest growth there more than that within the ATE, implying biotic factors were also significant for the accelerated forest growth in the ATE, which should be excluded from simulations and predictions of warming-induced treeline dynamics.


Subject(s)
Climate Change , Forests , Picea/growth & development , Trees/growth & development , Altitude , China
3.
Glob Chang Biol ; 19(8): 2500-10, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23564688

ABSTRACT

Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests.


Subject(s)
Droughts , Global Warming , Pinaceae/growth & development , China , Mongolia , Pinaceae/physiology , Siberia , Species Specificity , Trees/growth & development , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...