Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 41(16): 3791-4, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27519090

ABSTRACT

We study the use of random nanocomposite material as a photomask absorber layer for the next generation of extreme ultraviolet (EUV) lithography. By introducing nickel nanoparticles (NPs) randomly into a TaN host, the nanocomposite absorber layer can greatly reduce the reflectivity as compared with the standard TaN layer of the same thickness. Finite integral simulations show that the reduction in the reflectivity is mainly due to the enhanced absorption by the Ni NPs. The fluctuation in reflectivity induced by scattering and random position of the NPs is found to be on the order of 0.1%. Based on these observations, we build an effective medium model for the nanocomposite absorber layer and use the transfer matrix method to identify optimal absorber designs that utilize cavity effects to reduce the required volume fraction of Ni NPs. We further perform a process simulation and show that our approach can greatly reduce the HV bias in the lithography process.

2.
ACS Nano ; 10(4): 4004-10, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27010816

ABSTRACT

In situ transmission electron microscopy (TEM) electronic transport measurements in nanoscale systems have been previously confined to two-electrode configurations. Here, we use the focused electron beam of a TEM to fabricate a three-electrode geometry from a continuous 2D material where the third electrode operates as side gate in a field-effect transistor configuration. Specifically, we demonstrate TEM nanosculpting of freestanding graphene sheets into graphene nanoribbons (GNRs) with proximal graphene side gates, together with in situ TEM transport measurements of the resulting GNRs, whose conductance is modulated by the side-gate potential. The TEM electron beam displaces carbon atoms from the graphene sheet, and its position is controlled with nanometer precision, allowing the fabrication of GNRs of desired width immediately prior to each transport measurement. We also model the corresponding electric field profile in this three-terminal geometry. The implementation of an in situ TEM three-terminal platform shown here further extends the use of a TEM for device characterization. This approach can be easily generalized for the investigation of other nanoscale systems (2D materials, nanowires, and single molecules) requiring the correlation of transport and atomic structure.


Subject(s)
Graphite/chemistry , Nanotubes, Carbon/chemistry , Computer Simulation , Diffusion , Electrodes , Electrons , Microscopy, Electron, Transmission , Particle Size , Silicon/chemistry , Silicon Compounds/chemistry , Surface Properties
3.
ACS Nano ; 9(4): 3510-20, 2015.
Article in English | MEDLINE | ID: mdl-25738404

ABSTRACT

The use of graphene and other two-dimensional materials in next-generation electronics is hampered by the significant damage caused by conventional lithographic processing techniques employed in device fabrication. To reduce the density of defects and increase mobility, Joule heating is often used since it facilitates lattice reconstruction and promotes self-repair. Despite its importance, an atomistic understanding of the structural and electronic enhancements in graphene devices enabled by current annealing is still lacking. To provide a deeper understanding of these mechanisms, atomic recrystallization and electronic transport in graphene nanoribbon (GNR) devices are investigated using a combination of experimental and theoretical methods. GNR devices with widths below 10 nm are defined and electrically measured in situ within the sample chamber of an aberration-corrected transmission electron microscope. Immediately after patterning, we observe few-layer polycrystalline GNRs with irregular sp(2)-bonded edges. Continued structural recrystallization toward a sharp, faceted edge is promoted by increasing application of Joule heat. Monte Carlo-based annealing simulations reveal that this is a result of concentrated local currents at lattice defects, which in turn promotes restructuring of unfavorable edge structures toward an atomically sharp state. We establish that intrinsic conductance doubles to 2.7 e(2)/h during the recrystallization process following an almost 3-fold reduction in device width, which is attributed to improved device crystallinity. In addition to the observation of consistent edge bonding in patterned GNRs, we further motivate the use of bonded bilayer GNRs for future nanoelectronic components by demonstrating how electronic structure can be tailored by an appropriate modification of the relative twist angle of the bonded bilayer.


Subject(s)
Graphite/chemistry , Nanotubes, Carbon/chemistry , Crystallization , Electron Transport , Models, Molecular , Molecular Conformation , Monte Carlo Method
4.
Small ; 11(12): 1402-8, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25367876

ABSTRACT

CVD graphene devices on stacked CVD hexagonal boron nitride (hBN) are demonstrated using a novel low-contamination transfer method, and their electrical performance is systematically compared to devices on SiO(2). An order of magnitude improvement in mobility, sheet resistivity, current density, and sustained power is reported when the oxide substrate is covered with five-layer CVD hBN.


Subject(s)
Boron Compounds/chemistry , Gases/chemistry , Graphite/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Crystallization/methods , Electric Conductivity , Electron Transport , Oxides/chemistry , Particle Size , Surface Properties
5.
Nano Lett ; 14(8): 4238-44, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-24954396

ABSTRACT

Graphene nanoribbons (GNRs) are promising candidates for next generation integrated circuit (IC) components; this fact motivates exploration of the relationship between crystallographic structure and transport of graphene patterned at IC-relevant length scales (<10 nm). We report on the controlled fabrication of pristine, freestanding GNRs with widths as small as 0.7 nm, paired with simultaneous lattice-resolution imaging and electrical transport characterization, all conducted within an aberration-corrected transmission electron microscope. Few-layer GNRs very frequently formed bonded-bilayers and were remarkably robust, sustaining currents in excess of 1.5 µA per carbon bond across a 5 atom-wide ribbon. We found that the intrinsic conductance of a sub-10 nm bonded bilayer GNR scaled with width as GBL(w) ≈ 3/4(e(2)/h)w, where w is the width in nanometers, while a monolayer GNR was roughly five times less conductive. Nanosculpted, crystalline monolayer GNRs exhibited armchair-terminated edges after current annealing, presenting a pathway for the controlled fabrication of semiconducting GNRs with known edge geometry. Finally, we report on simulations of quantum transport in GNRs that are in qualitative agreement with the observations.


Subject(s)
Graphite/chemistry , Nanotubes, Carbon/chemistry , Electric Conductivity , Nanotubes, Carbon/ultrastructure
6.
ACS Nano ; 7(11): 10129-38, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24182310

ABSTRACT

Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric.

SELECTION OF CITATIONS
SEARCH DETAIL
...