Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38794400

ABSTRACT

Southwestern China is receiving excessive chemical fertilizers to meet the challenges of continuous cropping. These practices are deteriorating the soil environment and affecting tobacco (Nicotiana tabacum L.) yield and quality adversely. A novel microbially enriched biochar-based fertilizer was synthesized using effective microorganisms, tobacco stalk biochar and basal fertilizer. A field-scale study was conducted to evaluate the yield response of tobacco grown on degraded soil amended with our novel biochar-based microbial fertilizer (BF). Four treatments of BF (0%, 1.5%, 2.5% and 5%) were applied in the contaminated field to grow tobacco. The application of BF1.5, BF2.5 and BF5.0 increased the available water contents by 9.47%, 1.18% and 2.19% compared to that with BF0 respectively. Maximum growth of tobacco in terms of plant height and leaf area was recorded for BF1.5 compared to BF0. BF1.5, BF2.5 and BF5.0 increased SPAD by 13.18-40.53%, net photosynthetic rate by 5.44-60.42%, stomatal conductance by 8.33-44.44%, instantaneous water use efficiency by 55.41-93.24% and intrinsic water use efficiency by 0.09-24.11%, while they decreased the intercellular CO2 concentration and transpiration rate by 3.85-6.84% and 0.29-47.18% relative to BF0, respectively (p < 0.05). The maximum increase in tobacco yield was recorded with BF1.5 (23.81%) compared to that with BF0. The present study concludes that the application of BF1.5 improves and restores the degraded soil by improving the hydraulic conductivity and by increasing the tobacco yield.

2.
Plants (Basel) ; 13(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38498433

ABSTRACT

Significant research has been conducted on the effects of fertilizers or agents on the sustainable development of agriculture in salinization areas. By contrast, limited consideration has been given to the interactive effects of microbial fertilizer (MF) and salinity on hydraulic properties in secondary salinization soil (SS) and coastal saline soil (CS). An incubation experiment was conducted to investigate the effects of saline soil types, salinity levels (non-saline, low-salinity, and high-salinity soils), and MF amounts (32.89 g kg-1 and 0 g kg-1) on soil hydraulic properties. Applied MF improved soil water holding capacity in each saline soil compared with that in CK, and SS was higher than CS. Applied MF increased saturated moisture, field capacity, capillary fracture moisture, the wilting coefficient, and the hygroscopic coefficient by 0.02-18.91% in SS, while it was increased by 11.62-181.88% in CS. It increased soil water supply capacity in SS (except for high-salinity soil) and CS by 0.02-14.53% and 0.04-2.34%, respectively, compared with that in CK. Soil available, readily available, and unavailable water were positively correlated with MF, while soil gravity and readily available and unavailable water were positively correlated with salinity in SS. Therefore, a potential fertilization program with MF should be developed to increase hydraulic properties or mitigate the adverse effects of salinity on plants in similar SS or CS areas.

3.
Glob Chang Biol ; 30(1): e17001, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37947299

ABSTRACT

With limited phosphorus (P) supplies, increasing P demand, and issues with P runoff and pollution, developing an ability to reuse the large amounts of residual P stored in agricultural soils is increasingly important. In this study, we investigated the potential for residual soil P to maintain crop yields while reducing P applications and losses in Canada. Using a P cycling model coupled with a soil P dynamics model, we analyzed soil P dynamics over 110 years across Canada's provinces. We found that using soil residual P may reduce mineral P demand as large as 132 Gg P year-1 (29%) in Canada, with the highest potential for reducing P applications in the Atlantic provinces, Quebec, Ontario, and British Columbia. Using residual soil P would result in a 21% increase in Canada's cropland P use efficiency. We expected that the Atlantic provinces and Quebec would have the greatest runoff P loss reduction with use of residual soil P, with the average P loss rate decreasing from 4.24 and 1.69 kg ha-1 to 3.45 and 1.38 kg ha-1 , respectively. Ontario, Manitoba, and British Columbia would experience relatively lower reductions in P loss through use of residual soil P, with the average runoff P loss rate decreasing from 0.44, 0.36, and 4.33 kg ha-1 to 0.19, 0.26, and 4.14 kg ha-1 , respectively. Our study highlights the importance of considering residual soil P as a valuable resource and its potential for reducing P pollution.


Subject(s)
Phosphorus , Soil , Phosphorus/analysis , Agriculture , Minerals , Ontario , Fertilizers , Water Movements
4.
J Hazard Mater ; 454: 131477, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37104954

ABSTRACT

Biodegradable mulches (BMs) can be tilled into soils to mitigate disposal and environmental problems. However, the content of biodegradable microplastics (BMPs) would increase with the addition of biodegradable macroplastics (BMaPs). The fragmented particles have a strong affinity to soil pollutants, having the potential to transfer via the terrestrial food web in an agroecosystem. Based on the spectral analysis and particle size analysis, this study explored the physicochemical characteristics of weathered BMaPs and BMP-derived dissolved organic matter (DOMBMP). Ultraviolet (UV) irradiation reduced the mechanical strength of BMaPs and induced oxygenated functional groups, thus increasing surface roughness and hydrophilicity. This promoted the adsorption of aromatic compounds and heavy metals from soils to BMPs. After entering the water environment, the pH of the solution with DOMBMP decreased, whereas the concentration of dissolved organic carbon (DOC) increased. Compared with paper mulch, bioplastic mulch contributed a higher amount of DOMBMP, such as aromatic structure-containing chemicals and carboxylic acids, to the water environment but released fewer and smaller plastic particles. The findings from this study can help manage environmental risks and determine disposal strategies after the use of mulching.


Subject(s)
Plastics , Soil , Weather , Microplastics , Dissolved Organic Matter , Water
5.
Sci Total Environ ; 854: 158822, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36116657

ABSTRACT

Optimizing irrigation and nitrogen (N) fertilizer applications is essential to ensure crop yields and lower environmental risks under climate change. The DeNitrification-DeComposition (DNDC) model was employed to investigate the impacts of irrigation regime (RF, rainfed; MI, minimum irrigation; CI, critical irrigation; FI, full irrigation) and N fertilizer rate (N60, N90, N120, N150, N180, N210, N240, N270, and N300 kg ha-1) on yield and nitrous oxide (N2O) emissions from winter wheat growing season under different temperature rise levels (+0, +0.5, +1.0, +1.5, and +2.0 °C scenarios) and precipitation year types (wet, normal, and dry seasons) in the North China Plain. Model evaluations demonstrated that simulated soil temperature, soil moisture, daily N2O flux, yield, and cumulative N2O emissions were generally in close agreement with measurements from field experiment over three growing seasons. By adopting simulation scenarios analysis, the model was then used to explore the effects of irrigation and N fertilizer inputs to balance yield and N2O emissions from winter wheat growing season. Based on reduced water and fertilizer inputs and N2O emissions with little yield penalty, recommended management practices included application of MI-N150 in wet season, CI-N120 in both normal and dry seasons, and CI-N150 for +0 to +2.0 °C scenarios. Recommended practices in different precipitation year types reduced irrigation amount by 75-150 mm, N rate by 75-105 kg N ha-1, yield by 0.16-0.86 t ha-1, cumulative N2O emissions by 0.13-0.64 kg ha-1, and yield-scaled N2O emissions by 15.5-85.0 mg kg-1 compared with current practices. The corresponding metrics for different elevated temperature levels decreased by 75 mm, 75 kg N ha-1, 0.09-0.50 t ha-1, 0.12-0.52 kg ha-1, and 13.7-72.3 mg kg-1, respectively. The proposed management practices can help to maintain high agronomic productivity and alleviate environmental pollution from agricultural ecosystems, thereby providing an important basis for mitigation strategies to adapt to climate change.

6.
Front Plant Sci ; 13: 1036814, 2022.
Article in English | MEDLINE | ID: mdl-36589049

ABSTRACT

Combating desertification is vital for arresting land degradation and ensuring sustainable development of the global ecological environment. This study has analyzed the current desertification status and determined its control needs based on the difference between potential normalized difference vegetation index (PNDVI) and actual normalized difference vegetation index (ANDVI) in the Hotan desertoasis. The MaxEnt model, combined with the distribution point data of natural vegetation with long-term stable normalized difference vegetation index (NDVI) and 24 environmental factors was used to predict the PNDVI spatial distribution of different vegetation coverage grades and compared it with ANDVI. Excluding the areas of intense human activity such as arable land, the simulation results show that PNDVI with high, medium, and low vegetation cover was mainly distributed in the southwest and southeast of Hotan Oasis, in the midstream and downstream of Kalakash River and Yulong Kashi River, and the desert or Gobi area outside the oasis, respectively. The distribution of PNDVI with high, medium, and low vegetation cover accounted for 6.80%, 7.26%, and 9.17% of Hotan oasis, respectively. The comparison between ANDVI and PNDVI shows that 18.04% (ANDVI < PNDVI, about 3900 km2) of the study area is still suffering from desertification, which is mainly distributed in the desert-oasis ecotone in Hotan. The findings of this study implied that PNDVI could be used to assess the desertification status and endorsement of desertification control measures in vulnerable ecosystems. Hence, PNDVI can strengthen the desertification combating efforts at regional and global scales and may serve as a reference point for the policymakers and scientific community towards sustainable land development.

7.
J Environ Manage ; 285: 112097, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33578214

ABSTRACT

Agricultural production is a major source of carbon dioxide (CO2) and nitrous oxide (N2O) globally. The effects of conservation practices on soil CO2 and N2O emissions remain a high degree of uncertainty. In this study, soil CO2 and N2O emissions under different residue and tillage practices in an irrigated, continuous corn system, were investigated using the Root Zone Water Quality Model (RZWQM2). Combinations of no/high stover removal (NR and HR, respectively) and no-till/conventional tillage (NT and CT, respectively) field experiments were tested over the four crop-years (Apr. 2011-Apr. 2015). The model was calibrated using the NRCT, and validated with other treatments. The simulation results showed that soil volumetric water content (VWC) in the NR treatments (i.e., NRCT and NRNT) was 1.3%-1.9% higher than that in the HR treatments (i.e., HRCT and HRNT) averaged across the four years. A higher amount of CO2 and N2O emissions were simulated in the NRCT across the four years (annual average: 7034 kg C/ha/yr for CO2 and 3.8 kg N/ha/yr for N2O), and lower emissions were in the HRNT (annual average: 6329 kg C/ha/yr and 3.7 kg N/ha/yr for N2O). A long-term simulation (2001-2015) suggested that the CO2 and N2O emissions were closely correlated with the stover removal degree (SRD), tillage, VWC, soil temperature (ST), years in management (Y), and fertilizer application. Stover and tillage practices had cumulative effects on CO2 emissions. The simulated annual CO2 emissions in 1st year from NRCT, NRNT, and HRCT were 7.8%, 0.0%, and 7.7% higher than that from HRNT, respectively; then the emissions in 15th year were 63.6%, 47.7%, and 29.1% higher, respectively. Meanwhile, there were no cumulative effects on N2O emissions. The results also demonstrated that the RZWQM2 is a promising tool for evaluating the long-term effects of CO2 and N2O emissions on different conservation practices.


Subject(s)
Greenhouse Gases , Agriculture , Carbon Dioxide/analysis , Fertilizers/analysis , Nitrous Oxide/analysis , Soil , Water Quality , Zea mays
8.
PLoS One ; 15(12): e0242441, 2020.
Article in English | MEDLINE | ID: mdl-33264314

ABSTRACT

Camelina sativa L. is an oilseed crop with wide nutritional and industrial applications. Because of favorable agronomic characteristics of C. sativa in a water-limiting environment interest in its production has increased worldwide. In this study the effect of different irrigation regimes (I0 = three irrigations, I1 = two irrigations, I2 = one irrigation and I3 = one irrigation) on physio-biochemical responses and seed yield attributes of two C. sativa genotypes was explored under semi-arid conditions. Results indicated that maximum physio-biochemical activity, seed yield and oil contents appeared in genotype 7126 with three irrigations (I0). In contrast water deficit stress created by withholding irrigation (I1, I2 and I3) at different growth stages significantly reduced the physio-biochemical activity as well as yield responses in both C. sativa genotypes. Nonetheless the highest reduction in physio-biochemical and yield attributes were observed in genotype 8046 when irrigation was skipped at vegetative and flowering stages of crop (I3). In genotypic comparison, C. sativa genotype 7126 performed better than 8046 under all I1, I2 and I3 irrigation treatments. Because 7126 exhibited better maintenance of tissue water content, leaf gas exchange traits and chlorophyll pigment production, resulting in better seed yield and oil production. Findings of this study suggest that to achieve maximum yield potential in camelina three irrigations are needed under semi-arid conditions, however application of two irrigations one at flowering and second at silique development stage can ensure an economic seed yield and oil contents. Furthermore, genotype 7126 should be adopted for cultivation under water limited arid and semi-arid regions due to its better adaptability.


Subject(s)
Agricultural Irrigation , Brassicaceae/physiology , Desert Climate , Water , Analysis of Variance , Brassicaceae/genetics , Chlorophyll/metabolism , Gases/metabolism , Humidity , Osmosis , Plant Leaves/physiology , Plant Oils/metabolism , Plant Proteins/metabolism , Quantitative Trait, Heritable , Rain , Seeds/metabolism , Temperature
9.
J Environ Qual ; 49(5): 1203-1224, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33016450

ABSTRACT

Phosphorus (P) losses from nonpoint sources into surface water resources through surface runoff and tile drainage play a significant role in eutrophication. Accordingly, the number of studies involving the modeling of agricultural P losses, the uncertainties of such models, and the best management practices (BMPs) supported by the modeling of hypothetical P loss reduction scenarios has increased significantly around the world. Many improvements have been made to these models: separate manure P pools, variable source areas allowing the determination of critical source areas of P loss, analyses of modeling uncertainties, and understanding of legacy P. However, several elements are still missing or have yet to be sufficiently addressed: the incorporation of preferential flow into models, the modification of P sorption-desorption processes considering recent research data (e.g., pedotransfer functions for labile, active, or stable P, along with P sorption coefficients), BMP parameterization, and scale-up issues, as well as stakeholder-scientist and experimentalist-modeler interactions. The accuracy of P loss modeling can be improved by (a) incorporating dynamic P sorption-desorption processes and new P subroutines for direct P loss from manure, fertilizer, and dung, (b) modeling preferential flow, connectivity between field and adjacent water bodies, and P in-stream processes, (c) including an assessment of model uncertainty, (d) integrating field and watershed models for BMP calibration and scaling field results up to larger areas, and (e) building a holistic interaction between stakeholders, experimentalists, and modelers.


Subject(s)
Agriculture , Phosphorus , Eutrophication , Fertilizers , Manure
10.
Cell Signal ; 76: 109814, 2020 12.
Article in English | MEDLINE | ID: mdl-33080315

ABSTRACT

Osteoarthritis (OA) is a worldwide epidemic and debilitating disease. It is urgent to explore the potential molecular mechanisms of OA which has crucial roles in the treatment strategy. As a post-translational modification, sialylation mediates the progression of OA. In current study, differential expression of sialyltransferases (STs) in normal and OA cartilage tissues is detected. The ST3GAL4 expression is significantly increased and positively associated with modified Mankin's score in OA tissue. Alteration of ST3GAL4 respectively mediates the degradation of extracellular mechanisms (ECM), apoptosis and proliferation in chondrocytes. Additionally, miR-193b is identified as a direct regulatory target of ST3GAL4. Functional analysis shows that modulation of ST3GAL4 could be reversed by miR-193b. Over-expression ST3GAL4 modifies CD44 sialylation. Finally, sialylated CD44 reduces the binding capacity to lubricin and mediates the activity of the NF-кB pathway. Collectively, these researches indicate that miR-193b/ST3GAL4 axis impacts OA progression by regulating CD44 sialylation via NF-кB pathway. Our researches propose a precise molecular mechanism and provide a prospective therapeutic target in OA.


Subject(s)
Hyaluronan Receptors/metabolism , MicroRNAs/physiology , NF-kappa B/metabolism , Osteoarthritis/metabolism , Sialyltransferases/metabolism , Adult , Animals , Case-Control Studies , Cells, Cultured , Chondrocytes , Humans , Rats, Sprague-Dawley
11.
Cell Death Dis ; 11(7): 598, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732957

ABSTRACT

Osteoarthritis (OA) is a joint disease that causes great pain to patients and imposes a tremendous burden on the world's medical resources. Regulatory noncoding RNAs, including circular RNAs (circRNAs) and microRNAs (miRNAs), play an important role in OA progression. Here, we identified differential expression of transcription factor LEF1 that increased circRNA circRNF121 levels in normal and OA cartilage tissues. The expression of LEF1 and circRNF121 was positively associated with Mankin's scores. Alteration of circRNF121 mediated the degradation of extracellular mechanisms (ECM), apoptosis, and proliferation of chondrocytes. MiR-665 was identified as a direct regulatory target of circRNF121 and MYD88. Functional analysis showed that circRNF121 and MYD88 modulated ECM degradation, apoptosis, and proliferation of chondrocytes, which could be reversed by miR-665. MYD88 regulated the activity of the NF-кB signaling pathway by circRNF121 via sponging miR-665. Collectively, these data indicated that LEF1 impacted OA progression by modulating the circRNF121/miR-665/MYD88 axis via NF-кB pathway. Our research proposed a new molecular mechanism for the development of OA, and provided a prospective therapeutic target for OA.


Subject(s)
Disease Progression , Lymphoid Enhancer-Binding Factor 1/metabolism , MicroRNAs/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology , RNA, Circular/metabolism , Adult , Animals , Apoptosis/genetics , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cell Proliferation , Chondrocytes/metabolism , Chondrocytes/pathology , Extracellular Matrix/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , MicroRNAs/genetics , Middle Aged , Models, Biological , RNA, Circular/genetics , Rats, Sprague-Dawley , Signal Transduction
12.
Cell Death Dis ; 11(8): 689, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32826869

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Article in English | MEDLINE | ID: mdl-32708977

ABSTRACT

Nitrous oxide (N2O) as a by-product of soil nitrogen (N) cylces, its production may be affected by soil salinity which have been proved to have significant negative effect on soil N transformation processes. The response of N2O production across a range of different soil salinities is poorly documented; accordingly, we conducted a laboratory incubation experiment using an array of soils bearing six different salinity levels ranging from 0.25 to 6.17 dS m-1. With ammonium-rich organic fertilizer as their N source, the soils were incubated at three soil moisture ( θ ) levels-50%, 75% and 100% of field capacity ( θ fc )-for six weeks. Both N2O fluxes and concentrations of ammonium, nitrite and nitrate (NH4+-N, NO2--N and NO3--N) were measured throughout the incubation period. The rates of NH4+-N consumption and NO3--N accumulation increased with increasing soil moisture and decreased with increasing soil salinity, while the accumulation of NO2--N increased first then decreased with increasing soil salinity. N2O emissions were significantly promoted by greater soil moisture. As soil salinity increased from 0.25 to 6.17 dS m-1, N2O emissions from soil first increased then decreased at all three soil moisture levels, with N2O emissions peaking at electric conductivity (EC) values of 1.01 and 2.02 dS m-1. N2O emissions form saline soil were found significantly positively correlated to soil NO2--N accumulation. The present results suggest that greater soil salinity inhibits both steps of nitrification, but that its inhibition of nitrite oxidation is stronger than that on ammonia oxidation, which leads to higher NO2--N accumulation and enhanced N2O emissions in soil with a specific salinity range.


Subject(s)
Nitrous Oxide , Salinity , Soil , Fertilizers , Nitrification , Nitrogen , Nitrous Oxide/analysis
14.
Sci Total Environ ; 728: 138845, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32570331

ABSTRACT

Assessment of the impact of climate change on agricultural sustainability requires a robust full system estimation of the interdependent soil-plant-atmospheric processes coupled with dynamic farm management. The simplification or exclusion of major feedback mechanisms in modelling approaches can significantly affect model outcomes. Using a biogeochemical model, DNDCv.CAN, at three case-study locations in Canada, we quantified the impact of using commonly employed simplified modelling approaches on model estimates of crop yields, soil organic carbon (SOC) change and nitrogen (N) losses across 4 time periods (1981-2010, 2011-2040, 2041-2070, and 2071-2100). These approaches included using climate with only temperature and precipitation data, annual re-initialization of soil status, fixed fertilizer application rates, and fixed planting dates. These simplified approaches were compared to a more comprehensive reference approach that used detailed climate drivers, dynamic planting dates, dynamic fertilizer rates, and had a continuous estimation of SOC, N and water budgets. Alternative cultivars and rotational impacts were also investigated. At the semi-arid location, the fixed fertilizer, fixed planting date, and soil re-initialization approaches reduced spring wheat (Triticum aestivum L.) yield estimates by 40%, 25%, and 29%, respectively, in the 2071-2100 period relative to the comprehensive reference approach. At both sub-humid locations, the re-initialization of soil status significantly altered SOC levels, N leaching and N runoff in all three time periods from 2011 to 2100. At all locations, SOC levels were impacted when using simplified approaches relative to the reference approach, except for the fixed fertilizer approach at the sub-humid locations. Results indicate that simplified approaches often lack the necessary characterization of the feedbacks between climate, soil, crop and management that are critical for accurately assessing crop system behavior under future climate. We recommend that modellers improve their capabilities of simulating expected changes in agronomy over time and employ tools that consider robust soil-plant-atmospheric processes.

16.
Sci Total Environ ; 705: 135969, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31838422

ABSTRACT

Future climate change-driven alterations in precipitation patterns, increases in temperature, and rises in atmospheric carbon dioxide concentration ([CO2]atm) are expected to alter agricultural productivity and environmental quality, while high latitude countries like Canada are likely to face more challenges from global climate change. However, potential climate change impact on GHG emissions from tile-drained fields is poorly documented. Accordingly, climate change impacts on GHG emissions, N losses to drainage and crop production in a subsurface-drained field in Southern Quebec, Canada were assessed using calibrated and validated RZWQM2 model. The RZWQM2 model was run for a historical period (1971-2000) and for a future period (2038 to 2070) using data generated from 11 different GCM-RCMs (global climate models coupled with regional climate models). Under the projected warmer and higher rainfall conditions mean drainage flow was predicted to increase by 17%, and the N losses through subsurface drains increase by 47%. Despite the negative effect of warming temperature on crop yield, soybean yield was predicted to increase by 31% due to increased photosynthesis rates and improved crop water use efficiency (WUE) under elevated [CO2]atm, while corn yield was reduced by 7% even with elevated [CO2]atm because of a shorter life cycle from seedling to maturity resulted from higher temperature. The N2O emissions would be enhanced by 21% due to greater denitrification and mineralization, while CO2 emissions would increase by 16% because of more crop biomass accumulation, higher crop residue decomposition, and greater soil microbial activities. Soil organic carbon storage was predicted to decrease 22% faster in the future, which would result in higher global warming potential in turn. This study demonstrates the potential of exacerbating GHG emissions and water quality problems and reduced corn yield under climate change impact in subsurface drained fields in southern Quebec.

17.
J Environ Qual ; 48(4): 995-1005, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31589663

ABSTRACT

Prediction of P losses from manured agricultural fields through surface runoff and tile drainage is necessary to mitigate widespread eutrophication in water bodies. However, present water quality models are weak in predicting P losses, particularly in tile-drained and manure-applied cropland. We developed a field-scale P management model, the Root Zone Water Quality Model version 2-Phosphorus (RZWQM2-P), whose accuracy in simulating P losses from manure applied agricultural field is yet to be tested. The objectives of this study were (i) to assess the accuracy of this new model in simulating dissolved reactive phosphorus (DRP) and particulate phosphorus (PP) losses in surface runoff and tile drainage from a manure amended field, and (ii) to identify best management practices to mitigate manure P losses including water table control, manure application timing, and spreading methods by the use of model simulation. The model was evaluated against data collected from a liquid cattle manure applied field with maize ( L.)-soybean [ (L.) Merr.] rotation in Ontario, Canada. The results revealed that the RZWQM2-P model satisfactorily simulated DRP and PP losses through both surface runoff and tile drainage (Nash-Sutcliffe efficiency > 0.50, percentage bias within ±25%, and index of agreement > 0.75). Compared with conventional management practices, manure injection reduced the P losses by 18%, whereas controlled drainage and winter manure application increased P losses by 13 and 23%, respectively. The RZWQM2-P is a promising tool for P management in manured and subsurface drained agricultural field. The injection of manure rather than controlled drainage is an effective management practice to mitigate P losses from a subsurface-drained field.


Subject(s)
Manure , Phosphorus , Agriculture , Animals , Canada , Cattle , Rain , Water Movements , Water Quality
18.
J Environ Qual ; 48(4): 1006-1015, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31589671

ABSTRACT

There is an incentive for dairy farmers to maximize crop production while minimizing costs and environmental impacts. In cold climates, farmers have limited opportunity to balance field activities and manure storage requirements while limiting nutrient losses. A revised DeNitrification DeComposition (DNDC) model for simulating tile drainage was used to investigate fertilizer scenarios when applying dairy slurry or urea on silage corn ( L.) to examine N losses over a multidecadal horizon at locations in eastern Canada and the US Midwest. Management scenarios included timing (spring, fall, split, and sidedress) and method of application (injected [10 cm], incorporated [5 cm], and broadcast). Reactive N losses (NO from drainage and runoff, NO, and NH) were greatest from broadcast, followed by incorporated and then injected applications. Among the fertilizer timing scenarios, fall manure application resulted in the greatest N loss, primarily due to increased N leaching in non-growing-season periods, with 58% more N loss per metric ton of silage than spring application. Split and sidedress mineral fertilizer had the lowest N losses, with average reductions of 9.5 and 4.9%, respectively, relative to a single application. Split application mitigated losses more so than sidedress by reducing the soil pH shift due to urea hydrolysis and NH volatilization during the warmer June period. This assessment helps to distinguish which fertilizer practices are more effective in reducing N loss over a long-term time horizon. Reactive N loss is ranked across 18 fertilizer management practices, which could assist farmers in weighing the tradeoffs between field trafficability, manure storage capacity, and expected N loss.


Subject(s)
Fertilizers , Silage , Agriculture , Canada , Manure , Nitrogen , Zea mays
19.
Sci Rep ; 9(1): 9909, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31289318

ABSTRACT

Photosynthetic light response (PLR) curves of leaves are usually fitted by non-rectangular hyperbola (NRH) equation, and those fitted NRH parameters may change with leaf aging. The objectives of this study were 1) to reveal the response of NRH parameters of rice leaves, light-saturated net photosynthetic rate (Pnmax), quantum yield of assimilation (φ), dark respiration rate (Rd) and convexity of the curve (k), to leaf age; and 2) to improve the performance of NRH equation in simulating the PLR curves for leaves at various ages. The PLR for rice leaves at ages of 3-53 days were measured, and the general NRH equation was developed by incorporating the relationship between NRH parameters and leaf age into the NRH equation. The results showed that the NRH parameters of Pnmax, φ and Rd increased rapidly to maximum at approximately 10 days and then declined linearly toward the age of 53 days. However, the value of k was not sensitive to leaf age. The general NRH equation can be used to simulate leaf PLR continuously along with leaf aging.


Subject(s)
Algorithms , Light , Models, Biological , Oryza/metabolism , Photosynthesis , Plant Leaves/metabolism , Oryza/growth & development , Oryza/radiation effects , Plant Leaves/growth & development , Plant Leaves/radiation effects
20.
Sci Total Environ ; 646: 377-389, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30055498

ABSTRACT

Greenhouse gas (GHG) emissions from agricultural soils are affected by various environmental factors and agronomic practices. The impact of inorganic nitrogen (N) fertilization rates and timing, and water table management practices on N2O and CO2 emissions were investigated to propose mitigation and adaptation efforts based on simulated results founded on field data. Drawing on 2012-2015 data measured on a subsurface-drained corn (Zea mays L.) field in Southern Quebec, the Root Zone Water Quality Model 2 (RZWQM2) was calibrated and validated for the estimation of N2O and CO2 emissions under free drainage (FD) and controlled drainage with sub-irrigation (CD-SI). Long term simulation from 1971 to 2000 suggested that the optimal N fertilization should be in the range of 125 to 175 kg N ha-1 to obtain higher NUE (nitrogen use efficiency, 7-14%) and lower N2O emission (8-22%), compared to 200 kg N ha-1 for corn-soybean rotation (CS). While remaining crop yields, splitting N application would potentially decrease total N2O emissions by 11.0%. Due to higher soil moisture and lower soil O2 under CD-SI, CO2 emissions declined by 6% while N2O emissions increased by 21% compared to FD. The CS system reduced CO2 and N2O emissions by 18.8% and 20.7%, respectively, when compared with continuous corn production. This study concludes that RZWQM2 model is capable of predicting GHG emissions, and GHG emissions from agriculture can be mitigated using agronomic management.

SELECTION OF CITATIONS
SEARCH DETAIL
...