Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 564
Filter
1.
Intern Emerg Med ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967887

ABSTRACT

The prior studies have shown that interleukin-2 (IL-2) exerts important roles in the pathological and physiological processes of lung diseases. However, the role of IL-2 in community-acquired pneumonia (CAP) is still uncertain. Through a prospective cohort study, our research will explore the correlations between serum IL-2 levels and the severity and prognosis in CAP patients. There were 267 CAP patients included. Blood samples were obtained. Serum IL-2 were tested by enzyme-linked immunosorbent assay (ELISA). Demographic traits and clinical characteristics were extracted. Serum IL-2 were gradually elevated with increasing severity scores in CAP patients. Correlation analyses revealed that serum IL-2 were connected with physiological parameters including liver and renal function in CAP patients. According to a logistic regression analysis, serum IL-2 were positively correlated with CAP severity scores. We also tracked the prognostic outcomes of CAP patients. The increased risks of adversely prognostic outcomes, including mechanical ventilation, vasoactive agent usage, ICU admission, death, and longer hospital length, were associated with higher levels of IL-2 at admission. Serum IL-2 at admission were positively associated with severe conditions and poor prognosis among CAP patients, indicated that IL-2 may involve in the initiation and development of CAP. As a result, serum IL-2 may be an available biomarker to guide clinicians in assessing the severity and determining the prognosis of CAP.

2.
Cancer Res Commun ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994678

ABSTRACT

Aggressive breast cancers harbor TP53 missense mutations. Tumor cells with TP53 missense mutations exhibit enhanced growth and survival through transcriptional rewiring. To delineate how TP53 mutations in breast cancer contribute to tumorigenesis and progression in vivo, we created a somatic mouse model driven by mammary epithelial cell-specific expression of Trp53 mutations. Mice developed primary mammary tumors reflecting the human molecular subtypes of Luminal A, Luminal B, HER2-enriched, and Triple Negative Breast Cancer with metastases. Transcriptomic analyses comparing MaPR172H/- or MaPR245W/- mammary tumors to MaP-/- tumors revealed (1) differences in cancer associated pathways activated in both p53 mutants and (2) Nr5a2 as a novel transcriptional mediator of distinct pathways in p53 mutants. Meta-analyses of human breast tumors corroborated these results. In vitro assays demonstrate mutant p53 upregulates specific target genes that are enriched for Nr5a2 response elements in their promoters. Co-immunoprecipitation studies revealed p53R172H and p53R245W interact with Nr5a2. These findings implicate NR5A2 as a novel mediator of mutant p53 transcriptional activity in breast cancer.

3.
Article in English | MEDLINE | ID: mdl-39012751

ABSTRACT

Neural radiance fields (NeRF) have achieved great success in novel view synthesis and 3D representation for static scenarios. Existing dynamic NeRFs usually exploit a locally dense grid to fit the deformation fields; however, they fail to capture the global dynamics and concomitantly yield models of heavy parameters. We observe that the 4D space is inherently sparse. Firstly, the deformation fields are sparse in spatial but dense in temporal due to the continuity of motion. Secondly, the radiance fields are only valid on the surface of the underlying scene, usually occupying a small fraction of the whole space. We thus represent the 4D scene using a learnable sparse latent space, a.k.a. SLS4D. Specifically, SLS4D first uses dense learnable time slot features to depict the temporal space, from which the deformation fields are fitted with linear multi-layer perceptions (MLP) to predict the displacement of a 3D position at any time. It then learns the spatial features of a 3D position using another sparse latent space. This is achieved by learning the adaptive weights of each latent feature with the attention mechanism. Extensive experiments demonstrate the effectiveness of our SLS4D: It achieves the best 4D novel view synthesis using only about 6% parameters of the most recent work.

4.
J Environ Manage ; 366: 121635, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971067

ABSTRACT

Combatting land damage has become a global priority, and China has adopted a series of ecological engineering measures, especially in the agro-pastoral area with fragile ecological environment. The effectiveness of ecological engineering construction (EEC), from a comprehensive recognition encompassing its quality, quantity, and function, has remained largely unknown. To this end, Zhangbei County, a typical agro-pastoral ecotone of northern China, was chosen as our focal area. After summarizing the timelines, aims and results of the EEC during various periods in Zhangbei, the linear spectral mixture analysis was employed to process Landsat 5 TM images in 2000 and 2010, as well as Landsat 8 OLI images in 2020. Then, a comprehensive evaluation framework of EEC was established from the perspective of "quantity-quality-function", and the ecological effectiveness of EEC was evaluated from 2000 to 2020 in Zhangbei. Results revealed that EEC played a critical role in enhancing quantity, quality and function, in spite of that, there were still numerous regions showing varying degrees of degradation in terms of these aspects. Then, by extending the three-dimensional cube as the theoretical basis for the zoning management of EEC, we merged four zones according to the space matching relationship among quantity, quality and function of EEC, namely, Ecological conservation area, Ecological improvement area, Ecological restoration area and Ecological remodeling zone. More targeted ecological measures were required for specific matching relationship among quantity, quality and function of EEC. This study is expected to present an empirical case for assessing the ecological effectiveness of EEC in areas or countries with similar restoration demand and support regional management.

5.
Tuberculosis (Edinb) ; 148: 102542, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39024987

ABSTRACT

Tuberculosis (TB) is the leading cause of human death worldwide due to Mycobacterium tuberculosis (Mtb) infection. Multiple lines of evidences have illuminated the emerging role of NLRP3 inflammasome-mediated pyroptosis in the clearance of pathogenic infection. In the current study, we sought to investigate the functional role and feasible potential mechanism of BRD4 in Mtb-infected macrophages. We observed that BRD4 was distinctly ascended in THP-1 macrophages upon Mtb infection. Functionally, intervention of BRD4 or pretreated with JQ1 obviously restricted Mtb-triggered cell pyroptosis, as evidenced by declination of protein level of the specific pyroptosis markers including Cleaved Caspase 1, gasdermin D (GSDMD-N) and Cleaved-IL-1ß. In the meanwhile, disruption of BRD4 or JQ1 application remarkably prohibited excessive inflammatory responses as characterized by reduce the production of the inflammatory factors such as IL-1ß and IL-18. Concomitantly, disruption of BRD4 or administrated with JQ1 manifestly repressed Mtb-aroused Nod-like receptor family pyrindomain-containing 3 (NLRP3) inflammasome activation, as witnessed by attenuation of protein levels of NLRP3, Pro-Caspase1 and apoptosis-associated speck-like protein (ASC). The above findings clearly demonstrated that suppression of BRD4 exerted great influence on regulating Mtb-elicited inflammatory response by coordinating NLRP3 inflammasome-mediated pyroptosis. More importantly, perturbation of BRD4 or JQ1 employment notably restrained endoplasmic reticulum (ER) stress triggered by Mtb-infection, as reflected by noticeably lessened the levels of GRP78, CHOP and ATF6. In terms of mechanism, ER stress agonist tunicamycin profoundly abrogated the favorable effects of BRD4 inhibition on Mtb-triggered pyroptosis, inflammation reaction and inflammasome activation. Collectively, these preceding outcomes strongly illuminated that inhibition of BRD4 targeted ER stress to retard NLRP3 inflammasome activation and subsequent cell pyroptosis and prevention of inflammatory response in Mtb-infected macrophages, highlighting that blocking BRD4 might serve as a promising candidate for protection against Mtb-triggered inflammatory injury.

6.
J Am Chem Soc ; 146(27): 18451-18458, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935866

ABSTRACT

Electrocatalytic semihydrogenation of alkynols presents a sustainable alternative to conventional thermal methodologies for the high-value production of alkenols. The design of efficient catalysts with superior catalytic and energy efficiency for semihydrogenation poses a significant challenge. Here, we present the application of an electron-divergent Cu3Pd alloy-based heterojunction in promoting the electrocatalytic semihydrogenation of alkynols to alkenols using water as the proton source. The tunable electron divergence of Cuδ- and Pdδ+, modulated by rectifying contact with nitrogen-rich carbons, enables the concerted binding of active H species from the Volmer step of water dissociation and the C≡C bond of alkynols on Pdδ+ sites. Simultaneously, the pronounced electron divergence of Cu3Pd facilitates the universal adsorption of OH species from the Volmer step and alkynols on the Cuδ- sites. The electron-divergent dual-center substantially boosts water dissociation and inhibition of completing hydrogen evolution to give a turnover frequency of 2412 h-1, outperforming the reported electrocatalysts' value of 7.3. Moreover, the continuous production of alkenols at industrial-related current density (-200 mA cm-2) over the efficient and durable Cu3Pd-based electrolyzer could achieve a cathodic energy efficiency of 45 mol kW·h-1, 1.7 times the bench-marked reactors, promising great potential for sustainable industrial synthesis.

7.
Nat Commun ; 15(1): 5410, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926365

ABSTRACT

METTL3 is the catalytic subunit of the methyltransferase complex, which mediates m6A modification to regulate gene expression. In addition, METTL3 regulates transcription in an enzymatic activity-independent manner by driving changes in high-order chromatin structure. However, how these functions of the methyltransferase complex are coordinated remains unknown. Here we show that the methyltransferase complex coordinates its enzymatic activity-dependent and independent functions to regulate cellular senescence, a state of stable cell growth arrest. Specifically, METTL3-mediated chromatin loops induce Hexokinase 2 expression through the three-dimensional chromatin organization during senescence. Elevated Hexokinase 2 expression subsequently promotes liquid-liquid phase separation, manifesting as stress granule phase separation, by driving metabolic reprogramming. This correlates with an impairment of translation of cell-cycle related mRNAs harboring polymethylated m6A sites. In summary, our results report a coordination of m6A-dependent and -independent function of the methyltransferase complex in regulating senescence through phase separation driven by metabolic reprogramming.


Subject(s)
Cellular Senescence , Chromatin , Methyltransferases , Stress Granules , Methyltransferases/metabolism , Methyltransferases/genetics , Chromatin/metabolism , Humans , Stress Granules/metabolism , Stress Granules/genetics , Hexokinase/metabolism , Hexokinase/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Adenosine/metabolism , Adenosine/analogs & derivatives , HEK293 Cells , Metabolic Reprogramming , Phase Separation
8.
Nat Commun ; 15(1): 4784, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839772

ABSTRACT

Two-dimensional topological insulators hosting the quantum spin Hall effect have application potential in dissipationless electronics. To observe the quantum spin Hall effect at elevated temperatures, a wide band gap is indispensable to efficiently suppress bulk conduction. Yet, most candidate materials exhibit narrow or even negative band gaps. Here, via elegant control of van der Waals epitaxy, we have successfully grown monolayer ZrTe5 on a bilayer graphene/SiC substrate. The epitaxial ZrTe5 monolayer crystalizes in two allotrope isomers with different intralayer alignments of ZrTe3 prisms. Our scanning tunneling microscopy/spectroscopy characterization unveils an intrinsic full band gap as large as 254 meV and one-dimensional edge states localized along the periphery of the ZrTe5 monolayer. First-principles calculations further confirm that the large band gap originates from strong spin-orbit coupling, and the edge states are topologically nontrivial. These findings thus provide a highly desirable material platform for the exploration of the high-temperature quantum spin Hall effect.

10.
Chin J Integr Med ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850481

ABSTRACT

OBJECTIVE: To investigate whether Buthus martensii karsch (Scorpiones), Scolopendra subspinipes mutilans L. Koch (Scolopendra) and Gekko gecko Linnaeus (Gekko) could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α (PI3K/AKT/mTOR/HIF-1α) signaling pathway. METHODS: Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models, with rapamycin and cyclophosphamide as positive controls. Carboxy methyl cellulose solutions of Scorpiones, Scolopendra and Gekko were administered intragastrically as 0.33, 0.33, and 0.83 g/kg, respectively once daily for 21 days. Fluorescent expression were detected every 7 days after inoculation, and tumor growth curves were plotted. Immunohistochemistry was performed to determine CD31 and HIF-1α expressions in tumor tissue and microvessel density (MVD) was analyzed. Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1α signaling pathway-related proteins. Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor (bFGF), transforming growth factor-ß1 (TGF-ß1) and vascular endothelial growth factor (VEGF) in mice. RESULTS: Scorpiones, Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α (all P<0.01). Moreover, Scorpiones, Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase (p70S6K) (P<0.05 or P<0.01). In addition, they also decreased the expression of CD31, MVD, bFGF, TGF-ß1 and VEGF compared with the model group (P<0.05 or P<0.01). CONCLUSION: Scorpiones, Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1α signaling pathway.

11.
Am J Med Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825074

ABSTRACT

BACKGROUND: Superoxide dismutase 1 (SOD1) is one of the most important participants of antioxidant enzyme system in biological system. Previous studies have found that SOD1 is associated with many inflammatory diseases. The goal of this study was to assess the associations of serum SOD1 with the severity and prognosis in community-acquired pneumonia (CAP) patients by a prospective cohort study. METHODS: CAP patients were enrolled from the Second Affiliated Hospital of Anhui Medical University. Peripheral blood samples were gathered. The level of serum SOD1 was detected through enzyme linked immunosorbent assay (ELISA). Clinical characteristics and demographic information were analyzed. RESULTS: The level of serum SOD1 was gradually upregulated with elevated CAP severity scores. Spearman correlation coefficient or Pearson rank correlation analyses indicated that serum SOD1 was strongly connected with many clinical parameters among CAP patients. Further linear and logistic regression analyses found that the level of serum SOD1 was positively associated with CRB-65, CURB-65, SMART-COP, and CURXO scores among CAP patients. Moreover, serum higher SOD1 at admission substantially increased the risks of ICU admission, mechanical ventilation, vasoactive agent usage, death, and longer hospital stays during hospitalization. Serum SOD1 level combination with CAP severity scores elevated the predictive abilities for severity and death compared with alone serum SOD1 and CAP severity scores in CAP patients during hospitalization. CONCLUSION: The level of serum SOD1 is positively associated with the severity and poor prognosis in CAP patients, suggesting that SOD1 is implicated in the initiation and progression of CAP. Serum SOD1 may be regarded as a biomarker to appraise the severity and prognosis for CAP patients.

12.
BMC Palliat Care ; 23(1): 155, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902684

ABSTRACT

OBJECTIVE: Explore the feasibility of a mobile health(mHealth) and virtual reality (VR) based nutrition-exercise-psychology integrated rehabilitation model in Chinese cancer patients. METHODS: We recruited cancer patients in the Oncology department of the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University from October 2022 to April 2023. The rehabilitation program was provided by a team of medical oncologists, dietitians, psychotherapists, and oncology specialist nurses. Participants received standard anti-cancer therapy and integrated intervention including hospitalized group-based exercise classes, at-home physical activity prescription, behavior change education, oral nutrition supplements, and psychological counseling. An effective intervention course includes two consecutive hospitalization and two periods of home-based rehabilitation (8 weeks). Access the feasibility as well as changes in aspects of physical, nutritional, and psychological status. RESULTS: At the cutoff date of April 2023, the recruitment rate was 75% (123/165). 11.4%patients were lost to follow-up, and 3.25% withdrew halfway. Respectively, the completion rate of nutrition, exercise, and psychology were 85%,55%, and 63%. Nutrition interventions show the highest compliance. The parameters in nutrition, psychology, muscle mass, and quality of life after the rehabilitation showed significant improvements (P < .05). There was no significant statistical difference (P > .05) in handgrip strength and 6-minute walking speed. CONCLUSION: It is feasible to conduct mHealth and VR-based nutrition-exercise-psychology integrated rehabilitation model in Chinese cancer patients. A larger multi-center trial is warranted in the future. TRIAL REGISTRATION: ChiCTR2200065748 Registered 14 November 2022.


Subject(s)
Feasibility Studies , Neoplasms , Telemedicine , Virtual Reality , Humans , Male , Middle Aged , Female , Neoplasms/psychology , Neoplasms/rehabilitation , Neoplasms/complications , Prospective Studies , Adult , Aged , Exercise/psychology , Exercise Therapy/methods , Exercise Therapy/standards , Exercise Therapy/psychology , China
13.
J Hazard Mater ; 475: 134871, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38876020

ABSTRACT

Many studies have shown that Peroxymonosulfate (PMS) works synergistically with ferrate (Fe(VI)) to remove refractory organic compounds in a few minutes. However, little has been reported on the combined effects of peroxydisulfate (PDS) and Fe(VI). Since PDS is stable and cost effective, it is of practical significance to study the reaction mechanism and conditions of the PDS/Fe(VI) system. The results of the study indicate that the intermediate Fe(II) is formed during the decomposition of Fe(VI), which is then rapidly oxidized. Due to the asymmetry of the PMS molecular structure, PMS can rapidly trap Fe(II) (kPMS/Fe(II)= 3 × 104 M-1∙s-1), whereas PDS cannot (kPDS/Fe(II)= 26 M-1∙s-1). Hydroxylamine hydrochloride (HA) can reduce Fe(VI) and Fe(III) to Fe(II) to excite PDS to produce SO4•-. Acetate helps to detect Fe(II), but does not help PDS to trap Fe(II). Active species such as SO4•-, •OH, 1O2, and Fe(IV), Fe(V) are present in both systems, but in different amounts. In the PMS/Fe(Ⅵ) system, all these active species react with ibuprofen (IBP) and degrade IBP within several minutes. The effects of the initial pH, PMS or Fe(VI) dosage, and different amounts of IBP on the removal rate of IBP were investigated. According to the intermediates detected by the GC-MS, the degradation process of IBP includes hydroxylation, demethylation and single bond breakage. The degradation pathways of IBP were proposed. The degradation of IBP in tap water and Songhua River was also investigated. In actual water treatment, the dosage needs to be increased to achieve the same results. This study provides a basis and theoretical support for the application of PMS/Fe(Ⅵ) and PDS/Fe(VI) system in water treatment.

14.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2402-2409, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812141

ABSTRACT

Due to the highly stable structure of keratin, the extraction and dissolution steps of animal medicines rich in keratin are complex, which seriously restricts the detection efficiency and flux. Therefore, this study simplified the pre-treatment steps of horn samples and optimized the detection methods of characteristic peptides to improve the efficiency of identifying the specificity of horn-derived animal medicines. For detection of the characteristic peptides in horn-derived animal medicines treated with/without iodoace-tamide(IAA), the ion pair conditions of the characteristic peptides were optimized, and the retention time, intensity and other data of the specific peptides were compared between the samples treated with/without IAA. Two pre-treatment methods, direct enzymatic hydrolysis and total protein extraction followed by enzymatic hydrolysis, were used to prepare horn-derived animal medicine samples. The effects of different methods on the detection of specific peptides in the samples of Saiga antelope horn, water buffalo horn, goat horn, and yak horn were compared regarding the retention time of specific peptides and ion intensity. The results indicated that after direct enzymatic hydrolysis, the specific peptides in the samples without IAA treatment can be detected. Compared with the characteristic peptides in the samples treated with IAA, their retention time shifted back and the mass spectrometry response slightly decreased. The specific peptides of the samples without IAA treatment had good specificity and did not affect the specificity identification of horn-derived animal medicines. Overall, the process of direct enzymatic hydrolysis can be used to treat horn samples, omitting the steps of protein extraction and dithiothreitol and IAA treatment, significantly improving the pre-treatment efficiency without affecting the specificity identification of horn-derived animal medicines. This study provides ideas for quality research and standard improvement of horn-derived animal medicines.


Subject(s)
Horns , Keratins , Peptides , Animals , Horns/chemistry , Peptides/chemistry , Keratins/chemistry , Cattle , Goats , Buffaloes , Chromatography, High Pressure Liquid
15.
Food Chem ; 454: 139750, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38810457

ABSTRACT

Hydrophilic and hydrophobic modified nanomicelles might be more conducive to passage of the gastrointestinal barrier than walnut peptide (WP). In this study, a novel double modified starch polymer, SB-CST-DCA, was synthesized by grafting sulfabetaine (SB) and deoxycholic acid (DCA) onto corn starch (CST) molecules through etherification and esterification. The modification mechanism was discussed to determine its chemical structure, morphological properties, and thermal stability. Peptide-loaded nanomicelles (SB-CST-DCA-WP) were prepared using WP as the core material. The encapsulation efficiency and peptide loading amount reached 76.90 ± 1.52% and 18.27 ± 0.53%, respectively, with good stability and pH-responsive release behavior observed to effectively control WP release and enhance its antioxidant activity. The composite exhibited safety, non-toxicity, and good blood compatibility at concentrations below 125 µg/mL. Duodenum was identified as the main absorption site with an absorption ratio of 41.16 ± 0.36%.


Subject(s)
Delayed-Action Preparations , Drug Carriers , Juglans , Micelles , Peptides , Starch , Starch/chemistry , Juglans/chemistry , Peptides/chemistry , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Humans , Nanoparticles/chemistry , Hydrophobic and Hydrophilic Interactions , Drug Compounding , Plant Proteins/chemistry , Animals
16.
Insights Imaging ; 15(1): 121, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763985

ABSTRACT

OBJECTIVES: To develop an interactive, non-invasive artificial intelligence (AI) system for malignancy risk prediction in cystic renal lesions (CRLs). METHODS: In this retrospective, multicenter diagnostic study, we evaluated 715 patients. An interactive geodesic-based 3D segmentation model was created for CRLs segmentation. A CRLs classification model was developed using spatial encoder temporal decoder (SETD) architecture. The classification model combines a 3D-ResNet50 network for extracting spatial features and a gated recurrent unit (GRU) network for decoding temporal features from multi-phase CT images. We assessed the segmentation model using sensitivity (SEN), specificity (SPE), intersection over union (IOU), and dice similarity (Dice) metrics. The classification model's performance was evaluated using the area under the receiver operator characteristic curve (AUC), accuracy score (ACC), and decision curve analysis (DCA). RESULTS: From 2012 to 2023, we included 477 CRLs (median age, 57 [IQR: 48-65]; 173 men) in the training cohort, 226 CRLs (median age, 60 [IQR: 52-69]; 77 men) in the validation cohort, and 239 CRLs (median age, 59 [IQR: 53-69]; 95 men) in the testing cohort (external validation cohort 1, cohort 2, and cohort 3). The segmentation model and SETD classifier exhibited excellent performance in both validation (AUC = 0.973, ACC = 0.916, Dice = 0.847, IOU = 0.743, SEN = 0.840, SPE = 1.000) and testing datasets (AUC = 0.998, ACC = 0.988, Dice = 0.861, IOU = 0.762, SEN = 0.876, SPE = 1.000). CONCLUSION: The AI system demonstrated excellent benign-malignant discriminatory ability across both validation and testing datasets and illustrated improved clinical decision-making utility. CRITICAL RELEVANCE STATEMENT: In this era when incidental CRLs are prevalent, this interactive, non-invasive AI system will facilitate accurate diagnosis of CRLs, reducing excessive follow-up and overtreatment. KEY POINTS: The rising prevalence of CRLs necessitates better malignancy prediction strategies. The AI system demonstrated excellent diagnostic performance in identifying malignant CRL. The AI system illustrated improved clinical decision-making utility.

17.
Front Neurol ; 15: 1366357, 2024.
Article in English | MEDLINE | ID: mdl-38721124

ABSTRACT

Objective: This study aimed to compare the outcomes of unilateral biportal endoscopy, unilateral laminectomy bilateral decompression (UBE-ULBD), and open lumbar decompression (OLD) in patients with lumbar epidural lipomatosis (LEL). Methods: This prospective observational study was conducted from March 2019 to May 2022 and encompassed 33 patients with LEL who underwent lumbar decompression. The study included 15 cases of UBE-ULBD decompression and 18 cases of open decompression, which were followed up for 1 year. The baseline characteristics, initial clinical manifestations, and surgical details [including estimated blood loss (EBL) and preoperative complications] of all patients were recorded. Radiographic evaluation included the cross-sectional area (CSA) of the thecal sac and paraspinal muscles on MRI. Clinical results were analyzed using the Short Form-36 Score (SF-36), the Numeric Pain Rating Scale (NRS) for lumbar and leg pain, creatine kinase, the Roland and Morris Disability Questionnaire (RMDQ), and the Oswestry Disability Index (ODI). Results: The dural sac CSA increased considerably at the 1-year postoperative follow-up in both groups (p < 0.001). The operative duration in the OLD group (48.2 ± 7.2 min) was shorter than that in the UBE-ULBD group (67.7 ± 6.3 min, p < 0.001). The OLD group (97.2 ± 19.8 mL) was associated with more EBL than the UBE-ULBD group (40.6 ± 13.6 mL, p < 0.001). The duration of hospitalization in the OLD group (5.4 ± 1.3 days) was significantly longer compared with the UBE-ULBD group (3.5 ± 1.2 days, p < 0.01). The SF-36, NRS, RMDQ, and ODI scores improved in both groups postoperatively (p < 0.001). Serum creatine kinase values in the UBE-ULBD group (101.7 ± 15.5) were significantly lower than those in the OLD group (330.8 ± 28.1 U/L) 1 day after surgery (p < 0.001). The degree of paraspinal muscle atrophy in the UBE-ULBD group (4.81 ± 1.94) was significantly lower than that in the OLD group (12.15 ± 6.99) at 1 year (p < 0.001). Conclusion: UBE-ULBD and OLD demonstrated comparable clinical outcomes in treating LEL. However, UBE-ULBD surgery was associated with shorter hospital stays, lower rates of incision infection, lighter paravertebral muscle injury, and lower EBL than OLD surgery. Consequently, UBE-ULBD can be recommended in patients with LEL if conservative treatment fails.

18.
Aging Clin Exp Res ; 36(1): 111, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743351

ABSTRACT

BACKGROUND: Delirium is common among elderly patients in the intensive care unit (ICU) and is associated with prolonged hospitalization, increased healthcare costs, and increased risk of death. Understanding the potential risk factors and early prevention of delirium is critical to facilitate timely intervention that may reverse or mitigate the harmful consequences of delirium. AIM: To clarify the effects of pre-admission falls on ICU outcomes, primarily delirium, and secondarily pressure injuries and urinary tract infections. METHODS: The study relied on data sourced from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Statistical tests (Wilcoxon rank-sum or chi-squared) compared cohort characteristics. Logistic regression was employed to investigate the association between a history of falls and delirium, as well as secondary outcomes, while Kaplan-Meier survival curves were used to assess short-term survival in delirium and non-delirium patients. RESULTS: Study encompassed 22,547 participants. Delirium incidence was 40%, significantly higher in patients with a history of falls (54.4% vs. 34.5%, p < 0.001). Logistic regression, controlling for confounders, not only confirmed that a history of falls elevates the odds of delirium (OR: 2.11; 95% CI: 1.97-2.26; p < 0.001) but also showed it increases the incidence of urinary tract infections (OR:1.50; 95% CI:1.40-1.62; p < 0.001) and pressure injuries (OR:1.36; 95% CI:1.26-1.47; p < 0.001). Elderly delirium patients exhibited lower 30-, 180-, and 360-day survival rates than non-delirium counterparts (all p < 0.001). CONCLUSIONS: The study reveals that history of falls significantly heighten the risk of delirium and other adverse outcomes in elderly ICU patients, leading to decreased short-term survival rates. This emphasizes the critical need for early interventions and could inform future strategies to manage and prevent these conditions in ICU settings.


Subject(s)
Accidental Falls , Critical Illness , Delirium , Intensive Care Units , Humans , Delirium/epidemiology , Aged , Accidental Falls/statistics & numerical data , Female , Male , Aged, 80 and over , Cohort Studies , Risk Factors , Hospitalization , Incidence , Urinary Tract Infections/epidemiology
19.
J Adv Res ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740259

ABSTRACT

BACKGROUND: Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW: We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW: We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.

20.
Cell Death Dis ; 15(5): 336, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744865

ABSTRACT

Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.


Subject(s)
Fibrosis , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Animals , Epithelial-Mesenchymal Transition , Apoptosis , Molecular Targeted Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...