Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhen Jiu ; 40(1): 68-74, 2020 Jan 12.
Article in Chinese | MEDLINE | ID: mdl-31930902

ABSTRACT

OBJECTIVE: To explore the effect of early intervention electroacupuncture (EA) at "Baihui" (GV 20), "Dazhui" (GV 14) and "Shenshu" (BL 23) on the learning-memory ability and the expression of phosphorylated Tau protein in the hippocampus of SAMP8 mice, so as to provide reference for the intervening period of EA for Alzheimer's disease (AD). METHODS: A total of 36 3-month old SAMP8 mice were randomly divided into a model group, a 3-month-old EA group and a 9-month-old EA group, 12 mice in each group. Twelve normal SAMR1 mice with the same age were taken as the control group. The mice in the 3-month-old EA group and 9-month-old EA group were treated with EA at "Baihui" (GV 20), "Dazhui" (GV 14) and "Shenshu" (BL 23) separately 3 months old and 9 months old (continuous wave, 2 Hz, 1.5-2 mA), 20 min each time, once a day, 8 days as a course of treatment, with an interval of 2 days between courses, totally 3 courses of treatment were given. The mice sample in each group was collected at the age of 10 months after the learning-memory ability tested by Morris water maze. The expression of phosphorylated Tau protein in the hippocampus was detected by immunohistochemistry and Western blot, and the expression of Tau mRNA was detected by real-time PCR. RESULTS: Compared with the control group, in the model group, the escape latency was significantly increased (P<0.01), the time of stay in the original platform quadrant and the number of crossing the platform quadrant were reduced (P<0.01), and the expressions of phosphorylated Tau protein and Tau mRNA in hippocampus were increased (P<0.01). Compared with the model group, in the 3-month-old EA group and 9-month-old EA group, the escape latency was significantly reduced (P<0.05), the time of stay in the original platform quadrant and the number of crossing the platform quadrant were increased (P<0.05), and the expressions of phosphorylated Tau protein and Tau mRNA in hippocampus were reduced (P<0.05). Compared with the 9-month-old EA group, in the 3-month-old EA group, the escape latency was significantly reduced (P<0.05), the time of stay in the original platform quadrant and the number of crossing the platform quadrant were increased (P<0.05), and the expressions of phosphorylated Tau protein and Tau mRNA were reduced (P<0.01). CONCLUSION: The early EA intervention could more effectively improve the learning-memory ability and inhibit phosphorylation of Tau protein in the hippocampus of SAMP8 mice.


Subject(s)
Electroacupuncture , Animals , Disease Models, Animal , Hippocampus , Learning , Memory , Mice , tau Proteins
2.
Curr Med Chem ; 21(37): 4282-9, 2014.
Article in English | MEDLINE | ID: mdl-25139655

ABSTRACT

Spinal cord injury (SCI) is a common neurologic disorder that results in loss of sensory function and mobility. It is well documented that tissue engineering is a potential therapeutic strategy for treatment of SCI. In this connection, various biomaterials have been explored to meet the needs of SCI tissue engineering and these include natural materials, synthetic biodegradable polymers and synthetic non- degradable polymers. Nanofiber scaffolds are newly emerging biomaterials that have been widely utilized in tissue engineering recently. In comparison to the traditional biomaterials, nanofibers have advantages in topography and porosity, thus mimicking the naturally occurring extracellular matrix. Besides, they exhibit excellent biocompatibility with low immunogenicity, and furthermore they are endowed with properties that help to bridge the lesion cavity or gap, and serve as an effective delivery system for graft cells or therapeutic drugs. This review summarizes some of the unique properties of nanofiber scaffolds which are critical to their potential application in treatment of injured spinal cord.


Subject(s)
Nanofibers/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Drug Delivery Systems , Humans , Spinal Cord Injuries/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...