Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Transl Androl Urol ; 13(5): 802-811, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38855586

ABSTRACT

Background: Benign prostatic hyperplasia (BPH) is the most common benign disease causing voiding dysfunction in middle-aged and elderly men. the current "gold standard" for surgical treatment is transurethral resection of the prostate (TURP). Continuous bladder irrigation (CBI) is routinely given for 3 to 5 days after operation. However, this may induce bladder spasm. Bladder spasm not only brings physical and mental pain to patients, delaying the postoperative recovery process, but it also increases the medical economic burden. Therefore, it is important to take active measures to effectively warn and deal with bladder spasm. The color of the drainage fluid is an important indicator and requires close observation during CBI, as it can reflect real-time postoperative bleeding. When the color of drainage fluid is abnormal, effective measures should be undertaken. Grading nursing intervention divides patients into different conditions according to their possible changes, and then recommends targeted nursing intervention. Existing studies have formulated CBI programs from the perspective of quantifying the relationship between drainage fluid color and irrigation speed, but have yet to incorporate bladder spasm prevention and control levels or design corresponding grading nursing intervention programs according to different drainage fluid colors. This study aimed to construct the risk warning classification and intervention plan of bladder spasm under the guidance of CBI speed adjusting card after TURP. Methods: Based on the rate adjustment card of CBI after TURP, we formulated the first draft of an early warning classification of risk in bladder spasm and its intervention plans by combining methods suggested from a literature search with semi-structured interviews and results from 2 rounds of correspondence inquiries with 28 experts by the Delphi method. We further screened and revised grading standards and measures. Results: The positive coefficients of experts in 2 rounds of correspondence inquiries were both 100%, the authority coefficients were both 0.952, and the Kendall harmony coefficients were 0.238 and 0.326, respectively (P<0.01). In the second round of correspondence inquiries, the coefficient of variation of expert opinions was 0.000-0.154, and the coefficient of variation of all items was <0.25. Finally, a 3-level risk warning classification standard and 23 nursing measures for CBI complicated by bladder spasm was constructed. Conclusions: The early warning classification of risk in bladder spasm and its intervention plans guided by rate adjustment card of CBI after TURP are scientific and feasible, and can provide a basis and guidance for effective and standardized CBI in patients after TURP.

2.
J Cancer ; 14(14): 2700-2706, 2023.
Article in English | MEDLINE | ID: mdl-37779869

ABSTRACT

Aims The aim of this study was to investigate the anti-tumor efficacy of brucine on intrahepatic cholangiocarcinoma (ICC). Methods ICC QBC939 cells were treated with brucine, cell viability, cell cycle and apoptosis were analyzed using CCK-8 and flow cytometry. The expression of COX-2 and apoptosis related proteins Casp3, Bax and Bcl-2 were detected by Western blot analysis. QBC939 cells were subcutaneously transplanted into nude mice and the mice were injected with brucine intraperitoneally. The expression of Ki67, COX-2 and apoptosis related proteins were detected by immunohistochemical staining and Western blot analysis. Results Brucine significantly inhibited the proliferation and cell cycle progression while promoted the apoptosis of QBC939 cells. The expression of the apoptotic proteins Casp3 and Bax was upregulated, while the expression of Bcl-2 and COX-2 was downregulated in QBC939 cells with brucine treatment. Moreover, the overexpression of COX-2 could antagonize the effects of brucine on QBC939 cells. In vivo, brucine inhibited subcutaneous tumor formation in nude mice, and the expression of Ki67, COX-2 and Bcl-2 decreased while the expression of Casp3 and Bax increased in tumor tissues from nude mice with brucine treatment. Conclusions Brucine can significantly inhibit the progression of cholangiocarcinoma in vitro and in vivo, and the mechanism may be related to the inhibition of COX-2 expression.

3.
J Virol ; 97(9): e0079023, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37607058

ABSTRACT

Bats carry genetically diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). Some of them utilize human angiotensin-converting enzyme 2 (hACE2) as a receptor and cannot efficiently replicate in wild-type mice. Our previous study demonstrated that the bat SARSr-CoV rRsSHC014S induces respiratory infection and lung damage in hACE2 transgenic mice but not wild-type mice. In this study, we generated a mouse-adapted strain of rRsSHC014S, which we named SMA1901, by serial passaging of wild-type virus in BALB/c mice. SMA1901 showed increased infectivity in mouse lungs and induced interstitial lung pneumonia in both young and aged mice after intranasal inoculation. Genome sequencing revealed mutations in not only the spike protein but the whole genome, which may be responsible for the enhanced pathogenicity of SMA1901 in wild-type BALB/c mice. SMA1901 induced age-related mortality similar to that observed in SARS and COVID-19. Drug testing using antibodies and antiviral molecules indicated that this mouse-adapted virus strain can be used to test prophylactic and therapeutic drug candidates against SARSr-CoVs. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlights the importance of developing a powerful animal model to evaluate the antibodies and antiviral drugs. We acquired the mouse-adapted strain of a bat-origin coronavirus named SMA1901 by natural serial passaging of rRsSHC014S in BALB/c mice. The SMA1901 infection caused interstitial pneumonia and inflammatory immune responses in both young and aged BALB/c mice after intranasal inoculation. Our model exhibited age-related mortality similar to SARS and COVID-19. Therefore, our model will be of high value for investigating the pathogenesis of bat SARSr-CoVs and could serve as a prospective test platform for prophylactic and therapeutic candidates.


Subject(s)
Chiroptera , Mice , Severe acute respiratory syndrome-related coronavirus , Animals , Mice/virology , Chiroptera/virology , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Mice, Inbred BALB C , COVID-19/mortality , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/mortality , Serial Passage , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , Viral Zoonoses/drug therapy , Viral Zoonoses/transmission , Viral Zoonoses/virology , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/virology , Aging , Drug Evaluation, Preclinical
4.
J Nanobiotechnology ; 21(1): 210, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37408007

ABSTRACT

Although RNA interference (RNAi) therapy has emerged as a potential tool in cancer therapeutics, the application of RNAi to glioblastoma (GBM) remains a hurdle. Herein, to improve the therapeutic effect of RNAi on GBM, a cancer cell membrane (CCM)-disguised hypoxia-triggered RNAi nanomedicine was developed for short interfering RNA (siRNA) delivery to sensitize cells to chemotherapy and radiotherapy. Our synthesized CCM-disguised RNAi nanomedicine showed prolonged blood circulation, high BBB transcytosis and specific accumulation in GBM sites via homotypic recognition. Disruption and effective anti-GBM agents were triggered in the hypoxic region, leading to efficient tumor suppression by using phosphoglycerate kinase 1 (PGK1) silencing to enhance paclitaxel-induced chemotherapy and sensitize hypoxic GBM cells to ionizing radiation. In summary, a biomimetic intelligent RNAi nanomedicine has been developed for siRNA delivery to synergistically mediate a combined chemo/radiotherapy that presents immune-free and hypoxia-triggered properties with high survival rates for orthotopic GBM treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/therapy , Glioblastoma/metabolism , RNA Interference , Brain Neoplasms/drug therapy , Nanomedicine , Biomimetics , RNA, Small Interfering , Hypoxia/drug therapy , Cell Line, Tumor
5.
Planta ; 258(1): 11, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37289402

ABSTRACT

MAIN CONCLUSION: Light quality and intensity regulate plant mesophyll conductance, which has played an essential role in photosynthesis by controlling leaf structural and biochemical properties. Mesophyll conductance (gm), a crucial physiological factor influencing the photosynthetic rate of leaves, is used to describe the resistance of CO2 from the sub-stomatal cavity into the chloroplast up to the carboxylation site. Leaf structural and biochemical components, as well as external environmental factors such as light, temperature, and water, all impact gm. As an essential factor of plant photosynthesis, light affects plant growth and development and plays a vital role in regulating gm as well as determining photosynthesis and yield. This review aimed to summarize the mechanisms of gm response to light. Both structural and biochemical perspectives were combined to reveal the effects of light quality and intensity on the gm, providing a guide for selecting the optimal conditions for intensifying photosynthesis in plants.


Subject(s)
Mesophyll Cells , Plant Stomata , Plant Stomata/physiology , Carbon Dioxide , Plant Leaves/physiology , Photosynthesis , Plants
6.
BMC Complement Med Ther ; 23(1): 171, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37248456

ABSTRACT

BACKGROUND: Corosolic acid is a pentacyclic triterpene acid with hypoglycemic, anti-inflammatory, and anti-cancer effects. However, its potential targets in hepatocellular carcinoma (HCC) are unknown, hindering clinical utilization. METHODS: Differentially expressed proteins of the Bel-7404 cell line were identified with tandem mass tag analysis and differentially expressed genes (DEGs) of an HCC TCGA dataset using bioinformatics. Gene functions and pathways were inferred using the DAVID database. Online databases were used to establish P4HA2 expression in HCC (GEPIA2) and its relationship with patient survival (UALCAN and The Human Protein Atlas), the association between P4HA2 expression and immune cell infiltration (TIMER2), and DNA methylation of the P4HA2 gene (MethSurv). Cell proliferation, cell cycle, and cell death were assessed with PI and SYTOX-Green staining, CCK-8, and colony formation assays. Protein expression levels were detected by Western blotting. RESULTS: A total of 44 differentially expressed proteins and 4498 DEGs were identified. Four genes whose proteins were also found in the differential protein profile but with opposing expressions were selected as candidate targets. The candidate gene prolyl 4-hydroxylase subunit alpha 2 (P4HA2) was recognized as the only potential target due to its high expression in public datasets, association with poor patient survival, and relation to immune cell infiltration in HCC tissues. Moreover, the DNA methylation status in 4 CpG islands of the P4HA2 gene correlated with a poor prognosis. Furthermore, corosolic acid treatment inhibited the proliferation of HCC cell lines Bel-7404 and HepG2 in a dose-dependent manner, caused G2/M phase cell cycle arrest, and promoted cell death. In addition, the treatment reduced P4HA2 protein levels. CONCLUSION: Our results indicate that P4HA2 is a potential target of corosolic acid. Thus, they contribute to understanding molecular changes in HCC after corosolic acid treatment and facilitate finding new treatment regimens.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Triterpenes , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Line , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Triterpenes/pharmacology , Network Pharmacology
7.
J Ethnopharmacol ; 313: 116491, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37072091

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) Tian-Men-Dong decoction (TD) has been able to effectively treat lung cancer in China for thousands of years. TD improves the quality of life in lung cancer patients by promoting nourishment of yin and reducing dryness, clearing the lung and removing toxins. Pharmacological studies show that TD contains active antitumour ingredients, but its underlying mechanism remains unknown. AIM OF THE STUDY: This study aims at exploring potential mechanisms of TD in the treatment of lung cancer by regulating granulocytic-myeloid-derived suppressor cells (G-MDSCs). MATERIALS AND METHODS: An orthotopic lung cancer mouse model was generated by intrapulmonary injection with LLC-luciferase cells in immunocompetent C57BL/6 mice or immunodeficient nude mice. TD/saline was orally administered once to the model mice daily for 4 weeks. Live imaging was conducted to monitor tumour growth. Immune profiles were detected by flow cytometry. H&E and ELISA were applied to test the cytotoxicity of the TD treatment. RT-qPCR and western blotting were performed to detect apoptosis-related proteins in G-MDSCs. A neutralizing antibody (anti-Ly6G) was utilized to exhaust the G-MDSCs via intraperitoneal injection. G-MDSCs were adoptively transferred from wild-type tumour-bearing mice. Immunofluorescence, TUNEL and Annexin V/PI staining were conducted to analyse apoptosis-related markers. A coculture assay of purified MDSCs and T cells labelled with CFSE was performed to test the immunosuppressive activity of MDSCs. The presence of TD/IL-1ß/TD + IL-1ß in purified G-MDSCs cocultured with the LLC system was used for ex vivo experiments to detect IL-1ß-mediated apoptosis of G-MDSCs. RESULTS: TD prolonged the survival of immune competent C57BL/6 mice in an orthotopic lung cancer model, but did not have the same effect in immunodeficient nude mice, indicating that its antitumour properties of TD are exerted by regulating immunity. TD induced G-MDSC apoptosis via the IL-1ß-mediated NF-κB signalling cascade leading to effectively weaken the immunosuppressive activity of G-MDSCs and promote CD8+ T-cell infiltration, which was supported by both the depletion and adoptive transfer of G-MDSCs assays. In addition, TD also showed minimal cytotoxicity both in vivo and in vitro. CONCLUSION: This study reveals for the first time that TD, a classic TCM prescription, is able to regulate G-MDSC activity and trigger its apoptosis via the IL-1ß-mediated NF-κB signalling pathway, reshaping the tumour microenvironment and demonstrating antitumour effects. These findings provide a scientific foundation the clinical treatment of lung cancer with TD.


Subject(s)
Lung Neoplasms , Myeloid-Derived Suppressor Cells , Mice , Animals , Mice, Nude , NF-kappa B/metabolism , Quality of Life , Mice, Inbred C57BL , Lung Neoplasms/metabolism , Immunosuppressive Agents/pharmacology , Tumor Microenvironment
8.
Foods ; 12(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36981182

ABSTRACT

A new focus with respect to the extraction of plant protein is that ingredient enrichment should target functionality instead of pursuing purity. Herein, the sequence aqueous extraction method was used to co-enrich five protein-polysaccharide natural fractions from flaxseed meal, and their composition, structure, and functional properties were investigated. The total recovery rate of flaxseed protein obtained by the sequence extraction approach was more than 80%, which was far higher than the existing reports. The defatted flaxseed meal was soaked by deionized water to obtain fraction 1 (supernatant), and the residue was further treated to get fraction 2 (supernatant) and 3 (precipitate) through weak alkali solubilization. Part of the fraction 2 was taken out, followed by adjusting its pH to 4.2. After centrifuging, the albumin-rich supernatant and precipitate with protein content of 73.05% were gained and labeled as fraction 4 and fraction 5. The solubility of fraction 2 and 4 exceeded 90%, and the foaming ability and stability of fraction 5 were 12.76 times and 9.89 times higher than commercial flaxseed protein, respectively. The emulsifying properties of fractions 1, 2, and 5 were all greater than that of commercial sodium caseinate, implying that these fractions could be utilized as high-efficiency emulsifiers. Cryo-SEM results showed that polysaccharides in fractions were beneficial to the formation of network structure and induced the formation of tighter and smoother interfacial layers, which could prevent emulsion flocculation, disproportionation, and coalescence. This study provides a reference to promote the high-value utilization of flaxseed meals.

9.
mBio ; 14(2): e0328522, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36786573

ABSTRACT

In the last 2 decades, pathogens originating in animals may have triggered three coronavirus pandemics, including the coronavirus disease 2019 pandemic. Thus, evaluation of the spillover risk of animal severe acute respiratory syndrome (SARS)-related coronavirus (SARSr-CoV) is important in the context of future disease preparedness. However, there is no analytical framework to assess the spillover risk of SARSr-CoVs, which cannot be determined by sequence analysis alone. Here, we established an integrity framework to evaluate the spillover risk of an animal SARSr-CoV by testing how viruses break through key human immune barriers, including viral cell tropism, replication dynamics, interferon signaling, inflammation, and adaptive immune barriers, using human ex vivo lung tissues, human airway and nasal organoids, and human lung cells. Using this framework, we showed that the two pre-emergent animal SARSr-CoVs, bat BtCoV-WIV1 and pangolin PCoV-GX, shared similar cell tropism but exhibited less replicative fitness in the human nasal cavity or airway than did SARS-CoV-2. Furthermore, these viruses triggered fewer proinflammatory responses and less cell death, yet showed interferon antagonist activity and the ability to partially escape adaptive immune barriers to SARS-CoV-2. Collectively, these animal viruses did not fully adapt to spread or cause severe diseases, thus causing successful zoonoses in humans. We believe that this experimental framework provides a path to identifying animal coronaviruses with the potential to cause future zoonoses. IMPORTANCE Evaluation of the zoonotic risk of animal SARSr-CoVs is important for future disease preparedness. However, there are misconceptions regarding the risk of animal viruses. For example, an animal SARSr-CoV could readily infect humans. Alternately, human receptor usage may result in spillover risk. Here, we established an analytical framework to assess the zoonotic risk of SARSr-CoV by testing a series of virus-host interaction profiles. Our data showed that the pre-emergent bat BtCoV-WIV1 and pangolin PCoV-GX were less adapted to humans than SARS-CoV-2 was, suggesting that it may be extremely rare for animal SARSr-CoVs to break all bottlenecks and cause successful zoonoses.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Pangolins , SARS-CoV-2 , Zoonoses , Interferons , Phylogeny
10.
J Virol ; 97(2): e0171922, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36688655

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the most severe emerging infectious disease in the current century. The discovery of SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins in South Asian countries indicates that SARS-CoV-2 likely originated from wildlife. To date, two SARSr-CoV-2 strains have been isolated from pangolins seized in Guangxi and Guangdong by the customs agency of China, respectively. However, it remains unclear whether these viruses cause disease in animal models and whether they pose a transmission risk to humans. In this study, we investigated the biological features of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin (Manis javanica) captured by the Guangxi customs agency, termed MpCoV-GX, in terms of receptor usage, cell tropism, and pathogenicity in wild-type BALB/c mice, human angiotensin-converting enzyme 2 (ACE2)-transgenic mice, and human ACE2 knock-in mice. We found that MpCoV-GX can utilize ACE2 from humans, pangolins, civets, bats, pigs, and mice for cell entry and infect cell lines derived from humans, monkeys, bats, minks, and pigs. The virus could infect three mouse models but showed limited pathogenicity, with mild peribronchial and perivascular inflammatory cell infiltration observed in lungs. Our results suggest that this SARSr-CoV-2 virus from pangolins has the potential for interspecies infection, but its pathogenicity is mild in mice. Future surveillance among these wildlife hosts of SARSr-CoV-2 is needed to monitor variants that may have higher pathogenicity and higher spillover risk. IMPORTANCE SARS-CoV-2, which likely spilled over from wildlife, is the third highly pathogenic human coronavirus. Being highly transmissible, it is perpetuating a pandemic and continuously posing a severe threat to global public health. Several SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins have been identified since the SARS-CoV-2 outbreak. It is therefore important to assess their potential of crossing species barriers for better understanding of their risk of future emergence. In this work, we investigated the biological features and pathogenicity of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin, named MpCoV-GX. We found that MpCoV-GX can utilize ACE2 from 7 species for cell entry and infect cell lines derived from a variety of mammalian species. MpCoV-GX can infect mice expressing human ACE2 without causing severe disease. These findings suggest the potential of cross-species transmission of MpCoV-GX, and highlight the need of further surveillance of SARSr-CoV-2 in pangolins and other potential animal hosts.


Subject(s)
COVID-19 , Host Specificity , Pangolins , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Cell Line , China , COVID-19/transmission , COVID-19/virology , Lung/pathology , Lung/virology , Mice, Transgenic , Pangolins/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Swine , Chiroptera
11.
World J Gastroenterol ; 28(35): 5141-5153, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36188725

ABSTRACT

BACKGROUND: Pancreatic ductal cancer (PDAC) has high malignancy and poor prognosis. Long noncoding RNAs (lncRNAs) are associated with high levels of malignancy, including PDAC. However, the biological and clinical significance of negative regulator of antiviral response (NRAV) in PDAC is unclear. AIM: To study the regulatory role of lncRNA NRAV in PDAC. METHODS: GEPIA analyzed lncRNA NRAV and miRNA (miR-299-3p) expression levels in PDAC tissues and measured them in PDAC cells by quantitative measurements in real time. The specific role of NRAV and miR-299-3p in cell proliferation and transfer potential was evaluated by cell formation analysis, Cell Counting Kit-8 and Transwell analysis. The relationship between NRAV and miR-299-3p was studied by predictive bioinformatics, RNA immunoassay, and fluorescence enzyme analysis. In vivo experiments included transplantation of simulated tumor cells under naked mice. RESULTS: The expression level of lncRNA NRAV was higher in both tumor tissues and cell lines of PDAC and was negatively associated with the clinical survival of PDAC patients. Functionally, overexpression of NRAV promoted cell proliferation and metastasis of PDAC cells, while knockdown of NRAV reversed these effects. Finally, NRAV was performed as a molecular sponge of miR-299-3p. Moreover, overexpression of miR-299-3p could reverse the promoting effects of NRAV on cell proliferation and metastasis of PDAC cells. CONCLUSION: NRAV facilitates progression of PDAC as a molecular sponge of miR-299-3p and may be a potential molecular marker for diagnosis and treatment of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , RNA, Long Noncoding , Animals , Antiviral Agents , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pancreatic Neoplasms
12.
Signal Transduct Target Ther ; 7(1): 83, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35277473

ABSTRACT

SARS-CoV-2 induced marked lymphopenia in severe patients with COVID-19. However, whether lymphocytes are targets of viral infection is yet to be determined, although SARS-CoV-2 RNA or antigen has been identified in T cells from patients. Here, we confirmed that SARS-CoV-2 viral antigen could be detected in patient peripheral blood cells (PBCs) or postmortem lung T cells, and the infectious virus could also be detected from viral antigen-positive PBCs. We next prove that SARS-CoV-2 infects T lymphocytes, preferably activated CD4 + T cells in vitro. Upon infection, viral RNA, subgenomic RNA, viral protein or viral particle can be detected in the T cells. Furthermore, we show that the infection is spike-ACE2/TMPRSS2-independent through using ACE2 knockdown or receptor blocking experiments. Next, we demonstrate that viral antigen-positive T cells from patient undergone pronounced apoptosis. In vitro infection of T cells induced cell death that is likely in mitochondria ROS-HIF-1a-dependent pathways. Finally, we demonstrated that LFA-1, the protein exclusively expresses in multiple leukocytes, is more likely the entry molecule that mediated SARS-CoV-2 infection in T cells, compared to a list of other known receptors. Collectively, this work confirmed a SARS-CoV-2 infection of T cells, in a spike-ACE2-independent manner, which shed novel insights into the underlying mechanisms of SARS-CoV-2-induced lymphopenia in COVID-19 patients.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , T-Lymphocytes/metabolism , Animals , Caco-2 Cells , Chlorocebus aethiops , Humans , Vero Cells
13.
Transl Cancer Res ; 11(2): 392-402, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35281419

ABSTRACT

Background: Laparoscopic radical prostatectomy (LRP) is the standard treatment for early localized PCa, of which urinary incontinence is the most common postoperative complication. Pelvic floor muscle rehabilitation training is recognized as the first line of intervention measures, but the existing rehabilitation training programs are not clear in the formulation process, the content is not unified, and the clinical operability is not strong. In order to better guide clinical pelvic floor muscle rehabilitation training after LRP and prevent and control urinary incontinence, this study constructed a pelvic floor muscle rehabilitation training program for LRP patients. Methods: Literature analysis, qualitative interview, and an expert group meeting method were used to form the draft of pelvic floor muscle rehabilitation training program for LRP patients. On this basis, after 2 rounds of Delphi expert consultation, the research team modified and improved the program. Results: The consultation experts involved in the 2 rounds were the same, 15 questionnaires were sent out, and 15 were recovered with an effective recovery of 100%. The expert authority coefficient was 0.87. In the second round of consultation, Kendall's harmony coefficient was 0.14 (P<0.001), the mean coefficient of variation of expert opinion was 0.07 (P<0.001), and the mean value of importance assigned to each item was 4.53-5.00 points. Finally, the pelvic floor muscle rehabilitation training program for LRR patients was formed. Including rehabilitation training evaluation, rehabilitation training advanced time and content, rehabilitation training form of three first-level indicators, 12 second-level indicators, 53 third-level indicators. Conclusions: The pelvic floor muscle rehabilitation training program for LRP patients developed in this study is scientific, reliable, safe and feasible, which can provide reference for clinical pelvic floor muscle rehabilitation training after LRP and prevention and control of urinary incontinence.

14.
Prog Lipid Res ; 81: 101083, 2021 01.
Article in English | MEDLINE | ID: mdl-33373616

ABSTRACT

There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.


Subject(s)
Metabolic Engineering , Xanthophylls , Biosynthetic Pathways , Biotechnology , Xanthophylls/metabolism
15.
Transl Androl Urol ; 10(12): 4392-4401, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35070821

ABSTRACT

BACKGROUND: To construct a nursing solution for the prevention and control of urinary tract infection (UTI) in the early stage after kidney transplantation, and to provide systematic and standardized nursing intervention measures for patients in the early stage after kidney transplantation. METHODS: The preliminary draft of intervention plan was formulated based on risk factor analysis research results of early UTI after kidney transplantation, combined with theoretical research, literature review, and research group meeting. The Delphi method was used to consult 15 experts for two rounds, and the entries were modified according to the opinions of the experts. RESULTS: After two rounds of consultation, the expert opinions tended to be consistent, and expert authority coefficient was 0.87. The Kendall harmony coefficient of importance and feasibility indexes of the two rounds of consultation were 0.407, 0.651 and 0.545, 0.686, respectively, with statistically significant differences (P<0.001). The nursing solution consisted of eight first-level indexes and 35 second-level indexes. The eight first-level indexes included admission symptom evaluation, UTI monitoring, health education, sports intervention, nutrition intervention, ward management, risk factor prevention and nursing, and psychosocial intervention. CONCLUSIONS: This study constructed a scientific and reliable nursing solution for the prevention and control of early UTI after kidney transplantation, which is hugely important for guiding clinical nursing work.

16.
Front Med (Lausanne) ; 7: 585485, 2020.
Article in English | MEDLINE | ID: mdl-33330543

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is spreading throughout the world. Limited data are available for recurrence of positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in patients with long duration of COVID-19. Methods: We reported four cases recovered from COVID-19 with recurrence of positive SARS-CoV-2 results during the long-term follow-up. Results: The four patients recovered from COVID-19 showed recurrence of positive SARS-CoV-2 results for more than 120 days with no symptoms and normal chest CT scan. Conclusions: The dynamic surveillance of SARS-CoV-2 by nucleic acid detection and serological assays is important for asymptomatic patients who might be potentially infectious.

17.
Molecules ; 25(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722272

ABSTRACT

The efficient treatment of the problem of air pollution is a practical issue related to human health. The development of multi-functional air treatment filters, which can remove various kinds of pollutants, including particulate matter (PM) and organic gases, is a tireless pursuit aiming to address the actual needs of humans. Advanced materials and nano-manufacturing technology have brought about the opportunity to change conventional air filters for practical demands, with the aim of achieving the high-efficiency utilization of photons, a strong catalytic ability, and the synergetic degradation of multi-pollutants. In this work, visible-responding photocatalytic air treatment filters were prepared and combined with a fast and cost-effective electrospinning process. Firstly, we synthesized Ag-loaded TiO2 nanorod composites with a controlled size and number of loaded Ag nanoparticles. Then, multi-functional air treatment filters were designed by loading catalysts on electrospinning nanofibers combined with a programmable brush. We found that such Ag-TiO2 nanorod composite-loaded nanofibers displayed prominent PM filtration (~90%) and the degradation of organic pollutants (above 90%). The superior performance of purification could be demonstrated in two aspects. One was the improvement of the adsorption of pollutants derived from the increase of the specific surface area after the loading of catalysts, and the other was the plasmonic hot carriers, which induced a broadening of the optical absorption in the visible light range, meaning that many more photons were utilized effectively. The designed air treatment filters with synergistic effects for eliminating both PM and organic pollutants have promising potential for the future design and application of novel air treatment devices.


Subject(s)
Gases/analysis , Particulate Matter/analysis , Silver/chemistry , Titanium/chemistry , Air Filters , Catalysis , Light , Metal Nanoparticles/chemistry , Particle Size
18.
Cell Biochem Funct ; 38(6): 753-760, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32289885

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) associated with obesity may progress to non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma (HCC). Retinoic acid induced 16 (RAI16) plays an important role in cell apoptosis and is also a potential marker for HCC. Here we aimed to test the effect of RAI16 deficiency on liver pathology in high-fat diet (HFD) fed mice. Wild type (WT) and RAI16 knockout (RAI16-/-) C57BL/6 mice were fed with HFD or chow for up to 12 months. With consumption of HFD diet, RAI16-/- mice on HFD developed much more excess fatty liver within 4 months than WT mice on HFD. The expressions of fatty acid synthesis associated molecules Ppar-γ, Srebp-1c and Fas were further increased in RAI16-/- mice compared with WT mice on HFD. Macrophage infiltration related molecules Mcp-1 and F4/80 and pro-inflammatory factor Lcn2 were significantly increased in RAI16-/- mice compared with WT mice on HFD. Conclusively, RAI16 deficiency exacerbated HFD-induced liver injury, associated with increased inflammation. These findings indicate that RAI16 plays an important role in HFD-induced liver pathology and might be considered as a target for treatment of NAFLD. SIGNIFICANCE: 1. RAI16-/- mice on HFD developed much more excess fatty liver. 2. RAI16-/- mice showed more macrophage infiltration and proinflammation.


Subject(s)
Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/genetics , Animals , Apoptosis , Chemokine CCL2/metabolism , Fatty Acids/metabolism , Gene Expression Regulation , Inflammation , Lipid Metabolism , Lipocalin-2/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteins
19.
J Plant Physiol ; 248: 153158, 2020 May.
Article in English | MEDLINE | ID: mdl-32240968

ABSTRACT

Lysine acetylation is one of the most important post-translational modifications and is involved in multiple cellular processes in plants. There is evidence that acetylation may play an important role in light-induced de-etiolation, a key developmental switch from skotomorphogenesis to photomorphogenesis. During this transition, establishment of photosynthesis is of great significance. However, studies on acetylome dynamics during de-etiolation are limited. Here, we performed the first global lysine acetylome analysis for Zea mays seedlings undergoing de-etiolation, using nano liquid chromatography coupled to tandem mass spectrometry, and identified 814 lysine-acetylated sites on 462 proteins. Bioinformatics analysis of this acetylome showed that most of the lysine-acetylated proteins are predicted to be located in the cytoplasm, nucleus, chloroplast, and mitochondria. In addition, we detected ten lysine acetylation motifs and found that the accumulation of 482 lysine-acetylated peptides corresponding to 289 proteins changed significantly during de-etiolation. These proteins include transcription factors, histones, and proteins involved in chlorophyll synthesis, photosynthesis light reaction, carbon assimilation, glycolysis, the TCA cycle, amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our study provides an in-depth dataset that extends our knowledge of in vivo acetylome dynamics during de-etiolation in monocots. This dataset promotes our understanding of the functional consequences of lysine acetylation in diverse cellular metabolic regulatory processes, and will be a useful toolkit for further investigations of the lysine acetylome and de-etiolation in plants.


Subject(s)
Etiolation , Lysine/metabolism , Metabolome , Plant Proteins/metabolism , Sunlight , Zea mays/physiology , Acetylation , Zea mays/radiation effects
20.
Molecules ; 25(4)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085411

ABSTRACT

In this study, a novel monolithic capillary column based on a NH2-MIL-53(Al) metal-organic framework (MOF) incorporated in poly (3-acrylamidophenylboronic acid/methacrylic acid-co-ethylene glycol dimethacrylate) (poly (AAPBA/MAA-co-EGDMA)) was prepared using an in situ polymerization method. The characteristics of the MOF-polymer monolithic column were investigated by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, Brunauer-Emmett-Teller analysis, and thermogravimetric analysis. The prepared MOF-polymer monolithic column showed good permeability, high extraction efficiency, chemical stability, and good reproducibility. The MOF-polymer monolithic column was used for in-tube solid-phase microextraction (SPME) to efficiently adsorb trace sulfonamides from food samples. A novel method combining MOF-polymer-monolithic-column-based SPME with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was successfully developed. The linear range was from 0.015 to 25.0 µg/L, with low limits of detection of 1.3-4.7 ng/L and relative standard deviations (RSDs) of < 6.1%. Eight trace sulfonamides in fish and chicken samples were determined, with recoveries of the eight analytes ranging from 85.7% to 113% and acceptable RSDs of < 7.3%. These results demonstrate that the novel MOF-polymer-monolithic-column-based SPME coupled with UHPLC-MS/MS is a highly sensitive, practical, and convenient method for monitoring trace sulfonamides in food samples previously extracted with an adequate solvent.


Subject(s)
Food Analysis , Polymers/chemistry , Solid Phase Microextraction , Sulfonamides/analysis , Tandem Mass Spectrometry , Adsorption , Animals , Calibration , Chickens , Chromatography, High Pressure Liquid , Fishes , Hydrogen-Ion Concentration , Metal-Organic Frameworks , Rheology , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...